已知函数f(x)=x平方 2x a x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:00:47
分段函数分段解决 当aa 存在1/a>a a^2a 1/2a^2-a>0 解得a2当a
(1)由题意可得函数的定义域是R且函数是奇函数,把f(-1)=-f(1),代入可得:a=2.(2)由(1)可得f(x)=1−2x2+2x+1在它的定义域是R是减函数,且是奇函数,则不等式f(mt2+1
对f(x)=1/3x的平方+2x-5,(应该是这题吧)求导得f'(x)=2/3x+2>0,解得x>-3所以单调增区间为[-3,正无穷大)因为在[-3,正无穷大)单调增,所以最大值为f(3)=1/3*3
1,已知函数f(x)=x立方+6x平方,当X=0时,Y=0所以函数f(x)的图像经过原点,f(x)导=3x^2+6xf(0)导=02,已知函数f(x)=x立方+6x平方的导数为:f(x)导=3x^2+
f(x)=2x²,f(-x)=2×(-x)²=2x即把-x带入x同理f(1+x)=2×(1+x)²=2x²+4x+2
f(x+1)=(x+1)平方+5(x+1)+6所以f(x)=x平方-5x+6
法一f(x+1)=x²+2x=x²+2x+1-1=(x+1)²-1所以f(x)=x²-1法二:令x+1=t,则x=t-1那么f(t)=(t-1)²+2
由于lgx是增函数,所以只需求(x^2+2x+1/2)/x的最小值(x^2+2x+1/2)/x=x+2+1/2x=x+1/2x+2>=2根号(x*1/2x)+2=2+根号2所以f(x)最小值为lg(2
这里可以用换元法令2x+1=t则x=(t-1)/2原方程就可以化为f(t)=(t-1)/2+1=2t-1这里x和t的取值范围应该都是在实数域内所以f(x)=2x-1
f(2x-1)=x^2+8,2x-1=u,x=(u+1)/2f(x)=(x+1)^2/4+8
∵幂函数f(x)=xa的图象过点(12,22),∴(12)α=22,解得α=12,∴函数f(x)=x12;∴不等式f(|x|)≤2可化为|x|12≤2,即|x|≤2;解得|x|≤4,即-4≤x≤4;∴
f(x)=2cosx*sinx+根号3cos2x=sin2x+根号3cos2x=6/5①再利用sin2x+co2x=1②联立①②解出cox2x(因为x属于0到2π,所以2x属于0到4π)
(1)所给函数f(x)=((2a+1)/a)-(1/(xa^2))=2+1/a-1/a^2*1/x,是b-c/x(b、c>0)的形式,增减性用定义自己算一下应该不难.(2)根据单调性有,f(m)=m,
令t=2x+3则x=(t-3)/2所以f(t)=(t-3)²/4即f(x)=(x-3)²/4
把x=1代入根号内的值应为0a=-1分析方法:一、指数函数为单调函数二、当a>=0,x定义域为R三、两个指数函数的变化率不一样
f(x)=2cosx+sin^2x=-cos^2x+2cosx+1令t=cosx则f(x)=-t^2+2t+1=-(t-1)^2+2因为t∈[-1,1]所以当t=1时,f(x)有最大值2
由题意f(2)=2a=22=2−12,所以a=-12,所以f(x)=x−12,所以f(4)=4−12=12故答案为:12
f(-x)=2(-x)^2=2x^2f(1+x)=2(1+x)^2=2x^2+4x+2即-10≤3x-4≤5则-2≤x≤3即定义域【-2,3】
由原方程可化为f(x)=((x+1)的平方)+a-1所以方程的对称轴为x=-1,即x=-1时f(x)最小x=-1向两边递增(1)因为x∈[1,正无穷),所以当x=1时,f(x)为最小值3.5(2)因为