已知函数fx x的平方 ax 3,x∈-2,2,fx≥0恒成立则a的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:38:02
方程的三个根分别为0,1,2,f(x)=ax(x-1)(x-2)=a(x^3-3x^2+2x)因此有:b=-3a,c=2a,d=0因为a需大于0所以
导数为偶函数,则原来的函数是奇函数.再问:f(x)既有极大值又有极小值怎么判断再答:f(x)=ax³+bx²+cx,则:f'(x)=3ax²+2bx+c,因f'(x)是偶
(I)f′(x)=ax2-3x2+a+1由f′(1)=0得:a-3+a+1=0即a=1∴f(x)=13x3−32x2+2x+5(II)曲线y=f(x)与直线y=2x+m有三个交点即13x3−32x2+
(1)记f(x)的导函数为g(x)=(1-lnx)/x^2,当x在(0,e)是g(x)》0为增函数,当x》=e时g(x)《=0为减函数(2)*是指数还是相乘?
求导f'(x)=3ax^2+6x-1在R上是减函数a<0……(1)△=36+12a<=0……(2)由(1)(2),得a<=-3所以:a<=-3再问:判别式小于0都无解了
f(x)=ax平方+bx+c(a不等于0)是偶函数这是一个二次曲线,图像关于y轴对称对称轴-b/2a=0所以b=0g(x)=ax3+cx+b=ax3+cxg(-x)=-g(x)所以g(x)是奇函数偶函
因为ax平方+bx+c(a不等于0)是偶函数所以b=0所以g(x)=2ax^3是奇函数
对函数y=ax3-15x2+36x-24求导数,得y'=3ax2-30x+36∵函数y=ax3-15x2+36x-24在x=3处有极值,∴当x=3时,y'=27a-54=0,解之得a=2由此可得函数解
由图得:函数有三个零点:0,1,2.∴>=ax3-3ax2+2ax∴b=-3a又依图得:当x>2时,f(x)=ax(x-1)(x-2)>0,则a>0.∴b∈(-∞,0)故选A.
f(x)为偶函数∴ax4+bx+c=ax4-bx+c∴b=0g(x)=ax3+cxg(x)=-g(-x)为奇函数
这道题先求原函数的导函数y一撇=3ax2+3x-1这个导函数的函数值指的是原函数的切线斜率.因为原函数在实数范围内都是单调减函数,所以原函数的切线斜率一定小于0,也就是导函数的函数值一定小于0.所以导
f(x)=ax3次方+bx的平方-3xf(x)导数=3ax^2+2bx-3x=1或-1处,3ax^2+2bx-3=0,得a=1,b=0x=1,f(1)=-3x=-1,f(-1)=2x=-3,f(-3)
(1)∵f(x)=ax3-3x,∴f′(x)=3ax2-3,∵a≤0,所以f′(x)<0对任意实数x∈R恒成立,∴f(x)的单调减区间为(-∞,+∞).(2)当a≤0时,由(1)可知,f(x)在区间[
(1)f'(x)=2xex-1+x2ex-1+3ax2+2bx=xex-1(x+2)+x(3ax+2b),由x=-2和x=1为f(x)的极值点,得f′(-2)=0f′(1)=0.即-6a+2b=03+
(Ⅰ)a=3时,f(x)=x3-x2+2,f(2)=6,f'(x)=3x2-2x,f'(2)=8,∴切线方程为:y=8x-10(Ⅱ)f'(x)=x(ax-2),(1)a=0时,f'(x)=-2x,f(
由函数y=ax3-15x2+36x-24,x∈[0,4]得:y/=3ax2-30x+36∵函数在x=3处有极值∴f/(3)=27a-54=0故a=2,函数表达式为y=2x3-15x2+36x-24∴f
底数0.50所以g(x)=x^2-ax+3a,g(2)>04-2a+3a>0a>-4综上,
F(x)导函数=3ax^2-3x令x=2,12a-6=6a=12*6-9=33=2^3-1.5*2^2-bb=-1x^2+6x+9=0(x+3)^2=0x=-3
由题意,f'(x)=3ax平方+2x+b则g(x)=ax立方+(3a+1)x平方+(b+2)x+b因为g(x)是奇函数,所以g(-x)+g(x)=0对任意实数x恒成立即:ax立方-ax立方+2(3a+
求导f'(x)=3ax^2+6x-1在R上是减函数a