已知函数fx=2sin(wx),w>0 若fx在[-π 4,2π 3]上单调

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:46:03
已知函数fx=2sin(wx),w>0 若fx在[-π 4,2π 3]上单调
已知函数f(x)=sin (wx+兀/3)-cOs (wx+兀/6)-2sin ^2 wx/2+1

f(x)=sinwxcosPai/3+coswxsinPai/3-coswxcosPai/6+sinwxsinPai/6+coswx=sinwx+coswx=根号2sin(wx+Pai/4)T=2Pa

已知函数fx=sin(wx+π/3)的单调递增区间为

一个单调增区间的长度加上一个单调减区间的长度是一个周期所以这个函数的周期是T=Pi周期T=2Pi/w=Pi,所以w=2

已知函数fx=2sinwxcoswx-2sin平方wx+1,w>0,求w

两倍角公式:sin2a=2sinacosa得2sinacosa=sin2acos2a=cos²a-sin²a=(1-sin²a)-sin²a=1-2sin

已知函数f(x)=sin(wx+π/6)+sin(wx-π/6)-2cos^2 wx/2 w>0 若对任意a属于R,函数

(1)sin(wx+π/6)=sinwxcosπ/6+coswxsinπ/6sin(wx-π/6)=sinwxcosπ/6-coswxsinπ/6f(x)=sin(wx+π/6)+sin(wx-π/6

已知函数fx=sin²wx+根号3倍的sinwxsin(wx+π/2),w>0,最小正周期为π,求当x属于[-

fx=sin²wx+根号3倍的sinwxsin(wx+π/2)=(1-cos2wx)/2+√3sinwxcoswx=1/2-1/2cos2wx+√3/2sin2wx=sin(2wx-π/6)

已知函数fx =2 sin(2x+ pai /6)

fx=2sin(2x+pai/6)振幅A=2最小正周期T=2pai/2=paix∈【0,pai/]2xE[0,2pai]2x+pai/6E[pai/6,2pai+pai/6]很明显,设u=2x+pai

已知函数fx=2cos(wx+π/4)(w>0)的图像与函数gx=2sin(2x+α)+1的图像的对称轴完全相同.求fx

已知函数fx=2cos(wx+π/4)(w>0)的图像与函数gx=2sin(2x+α)+1的图像的对称轴完全相同.求fx单调递增区间解析:∵函数f(x),g(x)图像的对称轴完全相同,表示二函数的相位

已知函数f(X)=sin^2wx+根号3sinwx*sin(wx+π/2)+2cos^2wx,x属于R,在y轴右侧的第一

已知函数f(X)=sin^2wx+根号3sinwx*sin(wx+π/2)+2cos^2wx,x属于R,在y轴右侧的第一个最高点的横坐标为π/6,求w;若将函数f(x)的图像向右平移π/6个单位后,再

已知函数fx=2sin(wx+6/π)(w>0),若函数fx的图像与直线y=√2两个相邻交点的最短距离等于π,则w=

fx=2sin(wx+6/π)得到sin(wx+6/π)=√2/2令wx1+6/π=π/4wx2+6/π=3π/4则x2-x1=π两式相减得到w=1/2再问:为什么设π/4和3π/4呢?再答:这个是随

已知函数f x=√3sin(wx+φ/2)*cos(wx+φ/2)+sin^2(wx+φ/2)(w>0,0

f(x)=√3sin(wx+φ/2)*cos(wx+φ/2)+sin^2(wx+φ/2)=(√3/2)sin(2wx+φ)+(1/2)[1-cos(2wx+φ)]=sin(2wx+φ-π/6)+1/2

已知函数fx=2sin(wx-Ψ)图像中两相邻对称轴距离为3派,一个对称中心为(派/2,0)

所以T=6π=2π/ww=1/3fx=2sin(1/3x-Ψ)将(π/2,0)代入0=2sin(1/3*π/2-Ψ)所以Ψ=π/6

函数已知函数f(x)=sin^2wx+根号

1:(sinwx)^2+√3sinwxsin(wx+π\2)=(sinwx)^2+√3sinwxcoswx=2[(sinwx)^2+(√3\2)sin2wx]\2=[2(sinwx)^2+√3sin2

已知函数fx=2sin(wx),w>0 若fx在[-π/4,2π/3]上单调递增,求w的取值范围

解析:∵函数f(x)=2sinwx(w>0)在区间[-π/4,2π/3]上单调递增∵函数f(x)初相为0∴最小值点在Y轴左,最大值点在Y轴右,二者与Y轴之距相等函数f(x)最小值点:wx=2kπ-π/

已知函数fx=2sin(wx+

第一题A.第二题B

已知函数fx=sinwx•coswx+sin^2wx-1/2(w>0)其相邻两个零点间的距离为二分之派,1,

(1)f(x)=sinwx•coswx+sin^2wx-1/2=1/2sin2wx-1/2cos2wx=√2/2sin(2wx-π/4)相邻两个零点间的距离为π/2故T=π所以2w=2w=

已知函数fx=2sin(π-x)cosx

你的分析前一半是对的,一直到“那么2x的单调增区间是[-4分之π,4分之π]”.2x的单调递增区间是[-π/2,π/2],x的才是[-π/4,π/4].所以函数在x=-π/3处取得最小值为-2分之根号

1.已知函数fx=sin(2x+φ)(0

(1)fx=sin(2x+φ)经过点(π/12,1)sin(π/6+φ)=1∴π/6+φ=π/2+2kπ,k∈Z∴φ=π/3+2kπ,k∈Z∵0

已知函数fx=sin(2x+3分之π)

解答;f(x)=sin(2x+3分之π)∴sin(2x+π/3)=-3/5∵x∈(0,π/2)∴2x+π/3∈(π/3,4π/3)∵sin(2x+π/3)

已知函数fx=sin(2x+π/3)(1)求函数y=fx的

解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数