已知函数fx=asin(wx π 4) gx=tanx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:16:21
解由题知A=3T=4(π/2-(-π/2))=4π又由T=2π/w故2π/w=4π故w=1/2故f(x)=3sin(1/2x+φ)其图像过点(-π/2,3)知3sin(1/2x(-π/2)+φ)=3即
最大值是3,则A=3.函数周期是π,则2π/w=π,w=2.f(x)=3sin(2x+α)当x=π/6时f(x)取得最大值3,则3=3sin(π/3+α),π/3+α=π/2,α=π/6.∴f(x)=
已知函数f(x)=Asin(wx+a)(A>0,w>0,-π/20,w>0,-π/2π/3+a=π/2==>a=π/6∴f(x)=3sin(2x+π/6)单调增区间:2kπ-π/2x0=0==>2x0
把(-π/8,2)代入到原方程:2=2sin(-π/4+p)因为|p|
已知函数fx=asin(wx+f)的图像与x轴的交点,相邻两个交点之间的距离为π/2,且图像上,一个最高点为(π|6,2)当x属于(π|24,π|3),fx取值范围解析:∵函数fx=asin(wx+f
用“派”代表圆周率,抱歉拉波谷是(-1,y),且过(2,0)所以四分之一个周期是3,一个周期是12,所以w=2派/12=派/6因为(2,0)是上升趋势的零点,所以2w+φ=0,所以相位角φ=-2w=-
已知函数f(x)=Asin(wx+c)(A>0,w>0,|c|0)上f(x)分别取得最大值和最小值(1)求f(x)的解析式(2)在区间[21/4,23/4]上是否存在f(x)的对称轴?请说明理由(1)
A=2T=4*[π/6-(-π/6)]=4π/3w=2π/(4π/3)=1.5f(x)=2sin(1.5x+φ)2sin(1.5*π/6+φ)=2π/6+φ=π/2φ=π/3f(x)=2sin(1.5
已知函数fx=Asin(wx+α)+1(w>0.A>00
解析:因为f(x)=Asin(wx+φ)(A>0,w>0,0w=2所以,f(x)=2sin(2x+φ)==>f(π/12)=2sin(π/6+φ)=2==>φ=π/3所以,f(x)=2sin(2x+π
(1)fx=Asin(wx+π/4)(其中x∈R,A>0,w>0)的最大值为2,最小正周期为8.那么A=2,2π/w=8∴w=π/4∴f(x)=2sin(π/4x+π/4)(2)两点P、Q的横坐标依次
我已经算出函数y=f(x)+f(x+2)的简式y=2根号2cosπ/4x求当x∈[-6,-2/3]函数y的最大值与最小值以及相应的x值解析:∵y=2√2cos(π/4x)∴函数y周期为T=8,所以,当
已知函数fx=Asin(wx+φ),其中w>0.1)当A=w=2,φ=π/6时,函数g(x)=f(x)-m在[0,π/2]上有两个零点,求m的范围.2)当A=1,φ=π/6时,若函数fx图像的相邻两条
根据周期为π,可得w为2.由f(π/4)=Asin(2*π/4+ψ)+n=Asin(π/2+ψ)+n=Acosψ+n=√3+1,由fx的最大值为3可得A+n=3可得n=1,A=2,ψ=π/6所以,f(
第一题A.第二题B
(1)因为最大值为2+m说明A=2,最大最小值之间的最小距离为π/2,所以W=1所以在x取(-π/4,π/6)时,f(x)最大=f(π/12)=2+mf(x)最小=f(-π/4)=-1+m所以m=2(
已知函数fx=Asin(wx+)+B的一系列对应值如下表X-π/6π/35π/64π/311π/67π/317π/6Y-1131-113(1)根据表格提供的数据求函数y=f(x)的解析式(2)若对任意
f(x)=2sin(x-π/3)f(kx)=2sin(kx-π/3)T=2π/|k|=2π/3==>|k|=3∵ksin(-3x-π/3)=m/2∵x∈[0,4π/9)∴-3x∈(-4π/3,0]∴-
当x=π/12时,取得最大值为3,当x=7π/12时,取得最小值-3得到A=3T/2=7π/12-π/12所以T=πw=2π/12*2+φ=kπ+π/2,|φ|