已知函数fx=sin(π-wx)coswx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:59:46
f(x)=sinwxcosPai/3+coswxsinPai/3-coswxcosPai/6+sinwxsinPai/6+coswx=sinwx+coswx=根号2sin(wx+Pai/4)T=2Pa
一个单调增区间的长度加上一个单调减区间的长度是一个周期所以这个函数的周期是T=Pi周期T=2Pi/w=Pi,所以w=2
两倍角公式:sin2a=2sinacosa得2sinacosa=sin2acos2a=cos²a-sin²a=(1-sin²a)-sin²a=1-2sin
&=π/2,w=2.f(x)=sin(2x+π/2)=cos2x,偶函数,关于点M(3π/4,0)对称,且在[0,π/2]上是单调递减函数.
(1)sin(wx+π/6)=sinwxcosπ/6+coswxsinπ/6sin(wx-π/6)=sinwxcosπ/6-coswxsinπ/6f(x)=sin(wx+π/6)+sin(wx-π/6
fx=sin²wx+根号3倍的sinwxsin(wx+π/2)=(1-cos2wx)/2+√3sinwxcoswx=1/2-1/2cos2wx+√3/2sin2wx=sin(2wx-π/6)
已知函数fx=2cos(wx+π/4)(w>0)的图像与函数gx=2sin(2x+α)+1的图像的对称轴完全相同.求fx单调递增区间解析:∵函数f(x),g(x)图像的对称轴完全相同,表示二函数的相位
已知函数f(X)=sin^2wx+根号3sinwx*sin(wx+π/2)+2cos^2wx,x属于R,在y轴右侧的第一个最高点的横坐标为π/6,求w;若将函数f(x)的图像向右平移π/6个单位后,再
|f(x)|=1=>|siny|=1,因为0w*PI/2+PI/2w0,知w=2/3,2.
fx=2sin(wx+6/π)得到sin(wx+6/π)=√2/2令wx1+6/π=π/4wx2+6/π=3π/4则x2-x1=π两式相减得到w=1/2再问:为什么设π/4和3π/4呢?再答:这个是随
首先得T/2=2π-3π/4=5π/4所以:T=5π/2,即2π/w=5π/2,所以:w=4/5;所以:y=sin(4x/5+A),把点(3π/4,-1)代入,得:-1=sin(-3π/5+A)所以:
所以T=6π=2π/ww=1/3fx=2sin(1/3x-Ψ)将(π/2,0)代入0=2sin(1/3*π/2-Ψ)所以Ψ=π/6
1:(sinwx)^2+√3sinwxsin(wx+π\2)=(sinwx)^2+√3sinwxcoswx=2[(sinwx)^2+(√3\2)sin2wx]\2=[2(sinwx)^2+√3sin2
f(x)=sin^2wx+√3sinwxsin(wx+π/2)=sin^2wx+√3sinwxcoswx=1/2(1-cos2wx)+√3/2sin2wx=√3/2sin2wx-1/2cos2wx+1
解析:∵函数f(x)=2sinwx(w>0)在区间[-π/4,2π/3]上单调递增∵函数f(x)初相为0∴最小值点在Y轴左,最大值点在Y轴右,二者与Y轴之距相等函数f(x)最小值点:wx=2kπ-π/
第一题A.第二题B
(1)f(x)=sinwx•coswx+sin^2wx-1/2=1/2sin2wx-1/2cos2wx=√2/2sin(2wx-π/4)相邻两个零点间的距离为π/2故T=π所以2w=2w=
你的分析前一半是对的,一直到“那么2x的单调增区间是[-4分之π,4分之π]”.2x的单调递增区间是[-π/2,π/2],x的才是[-π/4,π/4].所以函数在x=-π/3处取得最小值为-2分之根号
解答;f(x)=sin(2x+3分之π)∴sin(2x+π/3)=-3/5∵x∈(0,π/2)∴2x+π/3∈(π/3,4π/3)∵sin(2x+π/3)
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数