已知函数fx=x 9 x的单调区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:48:15
f′(x)=3x²-3;(1)f(x)≥0;x≥1或x≤-1;单调递增区间为[1,﹢∞)∪﹙-∞,-1]单调递减区间为[-1,1](2)f(-3)=-27+9=-18;f(2)=8-6=2;
简单提示一下:对f(x)求导数,f'(x)>0,则单调递增,f'(x)
用求导吧,查查求导公式就可以了.f(x)=(lnx/x)-x=此函数的定义域(0,+∞)求导得:f'(x)=[(1-lnx)/x^2]-1=(1-lnx-x^2)/x^2(x>0)当且仅当1-lnx-
f到底是e的x^2次方还是x^2/e呢?我就按照后者计算了.首先,定义域(0,+∞)F(x)=x^2/e-2alnxF'=2x/e-2a/xa≤0时,F‘>0,F单调递增,无最值a>0时,F在(0,√
f'(x)=a/x-a=(a-ax)/x=a(1-x)/x定义域是x>0当a>0时令f'(x)>=00
将a=1带入函数中,变形为fx=(2x-1)/(2x+1)其中x不等于-1/2,否则无实意f’x=[(2x-1)'(2x+1)-(2x+1)'(2x-1)]/(2x+1)^2f’x=[2(2x+1)-
f'(x)=1*e^x+(x-k)*e^x=(x-k+1)*e^x显然e^x>0所以看x-k+1的符号f'(x)>0递增,f'(x)
fx=(lnx+a)/xf'(x)=(1-lnx-a)/x²=-[lnx-(1-a)]/x²f'(x)=0解得x=e^(1-a)由f'(x)>0即lnx-(1-a)再问:怎么确定e
f(x)=xe^x求导后得到f‘(x)=(x+1)e^x令f‘(x)=(x+1)e^x>0得到x>-1令f‘(x)=(x+1)e^x
fx的导数=1+a-1/x,把a=1带入,原式=2-1/x当2-1/x>0即x>1/2或x再问:嗯嗯再答:采纳一下吧,纯手打,谢了再问:呵呵。、不错
求导让导数等于零让后解方程注意x要大于零不符合的解舍掉让后在(0,+无穷)上根据导数的正负情况讨论增减区间.
f(x)=cos²x+sinxcosx=(cos2x+1)/2+1/2sin2x=(1/2cos2x+1/2sin2x)+1/2=√2/2*(√2/2cos2x+√2/2sin2x)+1/2
再问:还有一问在三角形ABC中ABC的对边分别为abc若fA=0A∈(0.π/2)且(1+√3)=2b求角c再答:刚刚不在,现在还需要解答吗再答:角A=45度,好像还缺条件
F(x)=x^2e^(ax)求导得:f’(x)=e^(ax)+ax²e^(ax)=e^(ax)(ax²+2x)e^(ax)恒大于0①a>0时,ax²+2x>0,解得x>0
求导数e^ax(ax2+2x)e^ax恒大于0,所以只要讨论ax2+2x即可x(ax+2)当a大于0时,递增区间就是x小于-2/a或者x大于0当a等于0时,x大于0递增当a小于0时,递增区间是x大于0
1)定义域为x>0f'(x)=(1-lnx)/x^2-1=(1-lnx-x^2)/x^2x>0时,lnx及x^2都是单调增函数,因此1-lnx-x^2是单调减函数,故1-lnx-x^2=0至多只有一个