已知函数fx=x² x a在区间上有0.1零点,则实数的取值范围为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:19:13
解判断函数fx在区间(0+∞)上单调递减设x1,x2属于(0,正无穷大)且x1<x2则f(x1)-f(x2)=1/(x1^2+1)-1/(x2^2+1)=(x2^2-x1^2)/(x1^2+1)(x2
f′(x)=3x²-3;(1)f(x)≥0;x≥1或x≤-1;单调递增区间为[1,﹢∞)∪﹙-∞,-1]单调递减区间为[-1,1](2)f(-3)=-27+9=-18;f(2)=8-6=2;
用求导吧,查查求导公式就可以了.f(x)=(lnx/x)-x=此函数的定义域(0,+∞)求导得:f'(x)=[(1-lnx)/x^2]-1=(1-lnx-x^2)/x^2(x>0)当且仅当1-lnx-
求导f·x=e的x次方+2x-3令导函数=0不好解令gx=的x次方+2xhx=-3显然,一个是增函数,一个是常函数且只有一个交点,但是不在(0,1)范围内因为g0=1>-3所以在范围内没有极值点
设在区间[-1,0]内有m>n,则f(m)-f(n)=(3^m-m^2)-(3^n-n^2)=(3^m-3^n)+(n^2-m^2)∵0≥m>n≥-1,∴(3^m-3^n)>0,(n^2-m^2)>0
你先把f(x)图像画出来,零点就是f(x)=a时候的解,就是y=a这条直线和你画出来的图像的交点,有10个,应该有对称的
1先对f(x)求导,它在(1,e)上递增2构造一个函数F(x)=g(x)-f(x),再对F(x)求导,可得到F(x)在区间内递增,即只需证明F(1)>0即可
解题思路:f(x)为偶函数,定义域关于原点对称,求m=-4/3,求f(x)的指数为2/3,x大于等于0,递增,奇偶性做图象解题过程:
什么是4X分之3
(1)当a=0时,f(x)=|x|x,f(-x)=-|x|x=-f(x),所以f(x)为奇函数;当a≠0时,f(x)=|x|(x-a),f(-x)=-|x|(x+a)≠-f(x),且f(-x)=-|x
f'(x)=x^2-2ax+4在[0,2]上单调增,则在此区间f'(x)>=0即x^2-2ax+4>=0a=2√(x*4/x)=4,当x=4/x即x=2时取等号故上式右端最小值为4/2=2故有a
不需要分类啊,a>2,x属于[1,2],则:x-a再问:能否把整个详细过程写出来感激不尽再答:
再答: 再答:根据图像以此类推就好啦再答:不懂得可以继续问(>_
x∈[-π/12,π/2]2x∈[-π/6,π]2x-π/6∈[-π/3,5π/6]sin(2x-π/6)∈[-√3/2,1]2sin(2x-π/6)∈[-√3,2]值域是[-√3,2]
a<-1,m(a)=3a-1-1≤a≤128m(a)=-a^2+aa>1aem(a)=1-a
奇函数然后取fx2–fx1再答:谢谢。
1)定义域为x>0f'(x)=(1-lnx)/x^2-1=(1-lnx-x^2)/x^2x>0时,lnx及x^2都是单调增函数,因此1-lnx-x^2是单调减函数,故1-lnx-x^2=0至多只有一个
f'(x)=3x^2+3(a-1)x-3a=3(x+a)(x-1)=0,得极值点x=-a,1讨论a:若a
已知函数fx=Inx-ax^2+(a+2)x求在区间a^2,a上的最大值f(x)的定义域是x>0f`(x)=2ax+(a+2)+1/x=(2ax^2+(a+2)x+1)/x=(ax+1)(2x+1)/