已知函数g(x)=Acos(wx fai) b...
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:11:57
由图象可得最小正周期为2π3.所以f(0)=f2π3,注意到2π3与π2关于7π12对称,故f2π3=-fπ2=2/3.
因为x=π2是方程f(x)=0的解.所以0=sinπ2+acos2π4,所以=-2,f(x)=sinx−2cos2x2=sinx-cosx-1=2sin(x-π4)-1,x∈[0,π],所以x−π4∈
fx=a/2sin2x-a根号(3)/2(1+cos2x)+根号(3)/2a+b=asin(2x-pai/3)+bpai/2
sin(2a+π/4)=sin(2ß+π/4)2a+π/4=π-(2ß+π/4)+2kπ或(2ß+π/4)+2kπ因为a-β≠kπ,k∈z,第二种情况舍掉由第一种情况化简
答:(1)h(x)=x^2/2+logm(x)-2x其中x>0,h'(x)=x+1/x*logm(x)-2=[x^2-2x+logm(x)]/x由题意x^2-2x+logm(e)是完全平方式,所以lo
AB=2√2推出T/2=2T=4w=π/2f(x)是奇函数故f(0)=0故cosφ=0φ=π/2+kπ推出φ=π/2f(x)=cos(π/2x+π/2)令π/2x+π/2=kπ得到x=2k-1(k是整
已知函数f(x)=Acos(wx+φ)(A>0,W>0,-π/2
首先f(-x)=f(x),得出是关于Y轴对称,f(0)要不是最大值,要不是最小值,排除B,D因为g的绝对值小于n/2,n就是PAI,所以单从SIN和COS上考虑,SIN移动一个正数(这个正数小于n/2
ω=1a=-1原式可化为f(x)=(√(a^2+1))/2sin(2wx+β)-(a+1)/2其中β为辅助角tanβ=a所以最大值为(√(a^2+1))/2-(a+1)/2=(√2)/22π=π*2w
∵x∈[0,π2],∴2x+π3∈[π3,4π3],∴-1≤cos(2x+π3)≤12,当a>0时,-a≤acos(2x+π3)≤12a,∵ymax=4,∴12a+3=4,∴a=2;当a<0时,12a
(1)因为f(x)的最大值为3,所以A=2.f(x)=2cos^2(wx+φ)+1=cos(2wx+2φ)+2.f(x)的图像的相邻两对称轴间的距离为2,则最小正周期为4.T=2π/2w=4,则w=π
解题思路:三角函数。解题过程:解:因为是方程f(x)=0的解.所以0=sin+a,所以a=-2,∴=sinx-cosx-1=sin(x-)-1,x∈[0,π],所以,sin(x-),sin(x-)-1
周期T=2(11π/12-7π/12)=2π/3ω=2π/T=3,f(x)=Acos(3x+φ)而f(¾π)=Acos(3×¾π+φ)=A,即cos(9π/4+φ)=1,所以φ=﹣
答,振幅是A,角频率是w,所以频率v=w/2π,周期T=1/v=2π/w,初相位为三角函数中最后一个常数,就是π/2,波长是跟x有关的哪一项是2π/(π/2)=4,波速v(频率是希腊字母v,波速是英文
f(x)=acos^2wx+sinwx·coswx-1/2=a(cos2wx+1)/2+1/2sin2wx-1/2=1/2sin2wx+a/2*cos2wx+(a-1)/2最大值是√[(a^2+1)/
(1)由最大值为2得到1*1+a*a=2*2,所有a值为根号3.化简得到2*π/6+α+π/3=(n+1/2)π,根据取值范围求出α=5π/6,(2)先将函数周期缩短为原来的二分之一,再将函数向左平移
1)f(x)=a[1/2*sin2x-√3/2*(1+cos2x)+√3/2]+b=a[1/2sin2x-√3/2cos2x]+b=asin(2x-π/3)+b因为a>0,所以单调减区间为:2kπ+π
∵f(π/3+x)=f(π/3-x)∴Asin(πω/3+xω+y)=Asin(πω/3-xω+y)∴πω/3+y=nπ/2(n=1、3、5、7、9、……)g(π/3)=Acos(πω/3+y)=Ac