已知函数y=f(x)的导数有且仅有两个零点,其图象如图所示
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:09:23
由方程F(x,y,t)=0,两边对x求导:ðF/ðx+(ðF/ðy)(dy/dx)+(ðF/ðt)(dt/dx)=0;即F'x+F'y*(d
*是乘号的意思f(x)=x³+ax²+x+1f'(x)=3x²+2ax+1已知函数f(x)有且只有一个极值点即f'(x)=3x²+2ax+1在区
f(x+c/2+c/2)+f(x+c/2-c/2)=2f(x+c/2)*f(c/2)=0所以f(x+c/2+c/2)+f(x+c/2-c/2)=f(x+c)+f(x)=0即f(x+c)=-f(x)
[解1]f(x)=f(1*x)=f(1)+f(x)所以f(1)=0又因为x>0所以f(1)=f(x*1/x)=f(x)+f(1/x)=0所以f(x)=-f(1/x)所以f(x/y)=f(x*1/y)=
X-1/X=YXY=X-1X-XY=1X=1/1-YF(X)=LN(1/1-X)F'(x)=1/(1-x)
y'=2f'(2x),y''=2x2f''(2x).这是复合函数求导原则,举例f(a(X))的导数为f'(a(X))乘以a'(X)
(1)因为f(x+y)=f(x)*f(y)所以f(x+0)=f(x)*f(0)所以,f(0)=1,或对于所有x,f(x)=0(2)如果有f(x0)0反证法:假设:f(x0)
f(x)=f(1*x)=f(1)+f(x),即f(1)=0f(x+Δx)-f(x)=f[x(1+Δx/x)]-f(x)=f(x)+f(1+Δx/x)-f(x)=f(1+Δx/x)故x>0时lim[f(
简单咋没分呢哈哈我帮你设X>0y>0{f(x+y)-f(x)]/y=[f(x)+f(y)-f(x)]/y=f(y)/y由于当x大于0时,f(x)大于0故f(y)/Y〉0及增函数单调几年级?
lim[f(x0-x)-f(x0+x)]/x(x->x0)=-2lim[f(x0+x)-f(x0-x)]/[(x0+x)-(x0-x)](x->x0)=-2f'(x0)
令x=xy=1f(x+1)=f(x)+x+1其实是个数列令f(x)=AnAn-A(n-1)=n.A2-A1=2用递归易得An=A1+2+3+...+n=(1+n)n/2f(n)=((1+n)n)/2
y'=(xlnx)'+(2x)'=(xlnx)'+2=(x)'lnx+(x)(lnx)'+2=lnx+1+2=lnx+3
用微分.再问:能不能用复合函数求导解下再答:用的就是复合函数求导方法。函数t=f(y/z,z/x)是由t=f(v,u)和v=y/z、u=z/x三个函数复合而成的。解答过程省略了:df(v,u)=0;f
复合函数求导y'=f'(√x)*(√x)'=f'(√x)*1/(2√x)
待定系数法,求导.设f(x)=ax2+bx+c.f'(1)=0,f(0)=3,f'(0)=-2.求出a、b、c的值就行了
关键是建立关于f'(派/3)的方程就可以了.对f(x)=x^2+f'(派/3)·sinx两边求导,得:f'(x)=2x+f'(派/3)cosx,再将x=派/3代入上式,得f'(派/3)=(2*派)/3
∵y=f(x)的导函数为f`(x)=3x^2-6x∴f(x)=x^3-3x^2C(C为常数)又∵f(0)=4∴C=4∴f(x)=x^3-3x^24令f'(x)<0,解得0<x<2∴f(x)的单调减区间