已知函数y=x2 (a 1)x b对任何实数x都有y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:00:01
在函数y=5/x图像上有三点A1(x1,y1)A2(x2,y2)A3(x3,y3)已知x1
三点带入函数得X1/k=Y1X2/k=Y2X3/k=Y3已知x1<x2<0<x3又因为k>0,(可以把k设为1考虑)可以推得y1再问:已知一次函数y=kx-4的图像交x轴,y轴于点A和点B,且AB=5
(1)二次函数y=x2-x+m=(x-12)2-14+m∵a>0,∴抛物线开口向上,对称轴为x=12,顶点坐标为(12,-14+m).(2)由已知,即-14+m>0,解得m>14,(3)∵二次函数y=
(1)令y=0,则x²+ax+(a-2)=0△=a²-4(a-2)=a²-4a+8=(a-2)²+4>0∴x²+ax+(a-2)=0总有两个实数根,即
设2根为:x1,x2;由已知得:|x1-x2|=√13由二次函数解析式得:x1+x2=-a;x1*x2=a-2(这是根据韦达定理)所以有,(x1-x2)^2=13=(x1+x2)^2-4x1*x2=a
A,望采纳AB点处的导数均为负值,而B点处斜率较大,到数值较小
(1)把x=0代入y=x2-6x+8得y=8,所以抛物线与y轴的交点坐标为(0,8),把y=0代入y=x2-6x+8得x2-6x+8=0,解得x1=2,x2=4,所以抛物线与x轴的交点坐标为(2,0)
(1)∵y=x2+4x=(x2+4x+4)-4=(x+2)2-4,∴对称轴为:x=-2,顶点坐标:(-2,-4);(2)y=0时,有x2+4x=0,x(x+4)=0,∴x1=0,x2=-4.∴图象与x
关系写清楚点,没看明白再问:y等于x平方-2小于等于xx小于等于aa大于等于-2
(1)证明:令y=0,则x2-kx+k-5=0,∵△=k2-4(k-5)=k2-4k+20=(k-2)2+16,∵(k-2)2≥0,∴(k-2)2+16>0∴无论k取何实数,此二次函数的图象与x轴都有
(1)根据b2-4ac与0的大小关系来判断二次函数与x轴交点的个数,即m2-4×1×(m-5)=m2-4m+20=(m-2)2+16>0,所以抛物线总与x轴有两个交点;(2)设函数与x轴两个交点的值为
(1)x轴截抛物线所得两交点的距离是根号3时,也就是方程:x2+mx+m-2=0的两根之差为根号3.X1-X2=根号3,(X1-X2)^2=3,(X1+X2)^2-4X1*X2,根据韦达定理,X1+X
Y=x2+KX+91、当K为何值时,对称轴为Y轴对称轴是Y轴则,k=02、当K为何值时,抛物线与X轴有两个交点与X轴有两个交点则△=k^2-36>0即k>6或k
(1)函数y=2x+2−x2的定义域为R,∵2x+2−x≥22x•2−x=2,当且仅当x=0时取等号.∴y≥1,因此函数的值域为:[1,+∞).(2)∵f(-x)=2−x+2x2=f(x),定义域为R
(1)∵a=1>0,∴抛物线开口方向向上;对称轴为直线x=-−12×1=12;4×1•m−(−1)24×1=4m−14,顶点坐标为(12,4m−14);(2)顶点在x轴上方时,4m−14>0,解得m>
(1)当二次函数图象与x轴相交时,2x2-mx-m2=0,△=(-m)2-4×2×(-m)2=9m2,∵m2≥0,∴△≥0.∴对于任意实数m,该二次函数图象与x轴总有公共点;(2)把(1,0)代入二次
(1)∵y=12x2-3x+1=12(x2-6x)+1=12(x-3)2-72,∴把它的图象向右平移1个单位,向下平移3个单位得到的函数的解析式为:y=12(x-3-1)2-72-3,即y=12(x-
(1)证明:y=x2-mx+m-2,△=(-m)2-4(m-2)=m2-4m+8=(m-2)2+4,∵(m-2)2≥0,∴(m-2)2+4>0,即△>0,∴不论m为何实数,此二次函数的图象与x轴都有两
∵y=-x2+4x-2=-(x-2)2+2∴对称轴为x=2(1)∵x∈[0,5],结合二次函数的图象,∴该函数的单调增区间为[0,2].(2)∵x∈[0,3],结合二次函数的图象,∴当x=2时函数有最
y`=1/(a^x-x^2)*(a^x-x^2)`=1/(a^x-x^2)*(lna*a^x-2x)=(lna*a^x-2x)/(a^x-x^2)