已知半径为5的圆过点P(-4,3),且圆心在直线2x-y 1=0上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:25:00
设圆的方程设圆心为(a,2a+1)(x-a)²+(y-2a-1)²=25带入P(-4,3)得到a=1或a=-1所以(x-1)²+(y-3)²=25或者(x+1)
点P的横坐标为1或-1,或者P的纵坐标为1时相切
设(x-a)^2+(y-b)^2=10,(2-a)^2+(2-b)^2=10,(a,b)到直线x-y=0距离d=丨a-b丨/根号2,(4根号2/2)^2=8,d^2=根号2,丨a-b丨=2a=b+2或
这时的弦弧长为4√3,弦弧的圆心角为120°弓形的面积2π×4×120°/360°-1/2×4√3×2=8π/3-4√3(平方厘米)
http://zhidao.baidu.com/question/33236658.html?si=1
如图,∵PA是⊙O的切线,连接OA,∴OA⊥PA,∵OP=2,OA=1,∴PA=OP2−OA2=22−12=3.
∵⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,∴过点P′且与OA平行的直线与⊙O相切时,假设切点为D,∴OD=DP′=1,OP′=2,∴0≤OP≤2,同理可得,当OP与x轴负半轴相交时,
这个……图呢……我自己画了一种情况——【-根号2,+根号2】就是B在x轴上……
连接OP并延长与圆相交于C.过点P作AB⊥CQ,AB即为最短弦.因为AO=5,OP=4,根据勾股定理AP=52−42=3,则根据垂径定理,AB=3×2=6.
(1)①OP=根号(5²-4²)=3②OQ=根号(5²-3²)=4因为两条弦平行所以O、P、Q三点共线(2)同理,OQ=4,所以PQ=1或PQ=7(3)相等,发
等于7.5算法如下:过O做PB的垂线交与D设OD的长为t,设半径长度为R连接PO列出方程组:PO平方=PA平方+R平方R平方=t平方+BD平方PO平方=PD平方+T平方PD+BD=8PA=4根据上面的
先求p点到直线的距离,判断与5的关系;小于就由直角三角形可知,有两个圆心;等于就是交点为圆心.再由半径求方程.
过点P的最长的弦是直径,长是26,最短的弦是与这条直径垂直的弦,长是24.则过点P的弦,其长度是整数的话,其长度可以是:26【一条】、25【两条】、24【一条】,共有4条.再问:为什么最短弦是与直径垂
当然是直径啦,6cm
连接OA,OB∵PA,PB是切线∴OA⊥PA,OB⊥PB∴∠PAO=∠PBO=90°∵OA=4,0B=4,PO=8∴∠APO=∠BPO=30°∴∠APB=60°
上图黄色区域即为所求,面积为 47-6π/12解题思路:先如图取一个满足条件的圆,然后再找临界状况.第一种临界:与三边相切,即三角形内三条蓝色的直线第二种临界:圆只与三角形的一个角相交,有两
设P(m,6-m),则OP^2=m^2+(6-m)^2,∴PQ^2=OP^2-OQ^2=2m^2-12m+34=2(m-3)^2+16.∴当m=3时,PQ最小=4.再问:6²不是36吗?34
在圆中,直径是最长的弦,所以最长的是过op的直径垂直于op的弦是最短的,可以简单的证明一下:任作一条过p的弦CD,设AB是过p点且垂直于op的弦由相交弦定理,CP*DP=AP*BP=定值由均值不等式,
jingjunlong789:过P点最长的弦是直径,长度为20最短的弦是垂直于OP的弦,长度为2√(10²-6²)=2√64=2×8=16所以长度为整数的弦有16、17、18、19