已知可逆矩阵A的特征值为1,2, -2,|A|的代数余子式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:21:49
∵A的特征值为a∴Ax=ax两遍同乘以A^(-1)得:x=aA^(-1)x∴A^(-1)x=(1/a)x,∴A的逆矩阵的1/a又∵A的特征值为2,则2A的特征值为2*2=4,∴(2A)的逆矩阵的一个特
95-4-0.25这里应该是A^-1x=-0.25x
1/(2λ),基本上特征值和矩阵是满足普通的函数对应关系.
|A|=2≠0可逆
|λE-A|=0根为1,2,-3则|A|≠0(因为λ=0不是上面方程的根)设B是A的逆矩阵|λE-A|=0等价于|λAB-A|=0等价于|λB-E|=0(因为A是行列式不等于0)等价于|(1/λ)E-
因为|A|=0所以0是A的特征值所以A的全部特征值为1,3,0所以A+2E的特征值为(λ+2):3,5,2故|A+2E|=3*5*2=30≠0所以A+2E可逆
A*的特征值是1-124,A*的行列式是-8,所以A的行列式是-2.A*的特征值是1-124,(用到结论:A的特征值就是A的行列式除以A*的特征值),所以A的特征值是-2,2,-1,-1/2.所以A-
设λ是A的特征值,则λ^2-λ是A^2-A的特征值而A^2-A=0所以λ^2-λ=0所以λ(λ-1)=0所以λ=1或λ=0因为A可逆,所以A的特征值不等于0故A的特征值为1.
对每个特征值λ,求出(A-λE)X=0的基础解系,由基础解系构成P.Ax=0的基础解系为a1=(-2,1)'(A-5E)x=0的基础解系为a2=(1,2)'令P=(a1,a2)=-2112则P可逆,且
A的特征值为1,2,-2那么A^(-1)的特征值为1,1/2,-1/2|A|=1*2*(-2)=-4A*=|A|A^(-1),那么A*的特征值为-4*1,-4*(1/2),-4*(-1/2)A11+A
123求|A||A|=1*2*3=6
如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^
λ是A的特征值则2λ是2A的特征值所以1/(2λ)是(2A)^-1的特征值(B)不对,(C)正确.
2-2*(1/2)=1.
I-2A^-1的特征值为(1-2/λ):-1,0,1/2所以其行列式等于0再问:为什么它的特征值是(1-2λ^2),而不是(1-2λ^-1)呢?再答:嗯你刷新一下看看
先告诉你一个定理吧:若x是A的特征值,则f(x)是f(A)的特征值.(其中f(x)是x的多项式,f(A)矩阵A的多项式)那么你的问题答案就显而易见了,f(x)=x+x^2;所以B的特征值为飞f(1)、
由已知(1/2)2^2=2是(1/2)A^2的特征值所以1/2是((1/2)A^2)^-1的特征值
|A-1(A的可逆矩阵的模)|=1/2*1/2*1/3=1/12
A2的特征值为1,1,4A2+2E的特征值为3,3,6