已知向量a=(2,-1)b=(-3,4)且(ma b)与(a-b)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:18:37
|a+b|²=|a|²+2a*b+|b|²=1+2×1×√2×cos135°+(√2)²=3-2=1,则|a+b|=1
∵│m│^2=(2a+b)^2=4a^2+4ab+b^2=16+1+4*2*1*cos60度=21│n│^2=(a-4b)^2=a^2-8ab+16b^2=4-8*2*1*cos60度+16=12∴│
向量a-向量b与向量a垂直,则(a-b)•a=0,a^2=a•b,所以a•b=a^2=1.Cos=a•b/(|a||b|)=1/(1×√2)=√2/2.
a*b=|a|*|b|*cos60°=2*1*1/2=1向量2a向量+kb向量与a向量+b向量垂直所以(2a+kb)(a+b)=02a²+2ab+kab+kb²=02*4+2*1+
a向量的绝对值=2(a向量-b向量)(a向量+b向量)=1|a|=2(|a|-|b|)(|a|+|b|)=1|a|^2-|b|^2=1/2|a|^2=1|向量b|=2分之根号2(1)求(a-b)^2+
感觉应该是减.如果是减的话:|a向量+b向量|﹦sqrt(3)|a向量-b向量|即:|a+b|^2=3|a-b|^2|a+b|^2=(a+b)dot(a+b)=|a|^2+|b|^2+2(adotb)
因为|2a-b|^2=4a^2-4a*b+b^2=4[(cosa)^2+(sina)^2]-4(√3cosa+sina)+(3+1)=8-8sin(a+π/3)最小值为8-8=0,所以|2a-b|最小
若向量a、向量b的夹角为135º|向量a+向量b|=√a^2+2ab+b^2=1若向量a平行向量b求向量a.向量b当a,b同向时为√2反向时为-√2
设这个夹角是α则cosα=ab/a的模b的模=(2a+λb)(λa-3b)/a的模b的模=(2λa²-6ab+λ²ab-3λb²)/a的模b的模=(2λ2-6√2cos4
c=(1,1/2-k/2);d=(1,1);∴cos=(1+1/2-k/2)/√(1+(1/2-k/2)²)√(1+1)=cos45°=√2/2;∴(3/2-k/2)/√2√(1+(1+k&
a·b=(x1,y1-1)·(x2,y2-2)=x1x2+(y1-1)(y2-2)=x1x2+y1y2+2-2y1-y2再问:题目打错了,是y2-1再答:a·b=(x1,y1-1)·(x2,y2-1)
a·b=|a||b|cosx因为两向量平行所以cosX为1答案为1*根号2=根号2这么详细表太感动
两个向量的夹角不可能是二分之三派.是2π/3就按这个来求.由已知,a*b=3*1*cos(2π/3)=-3/2,因此m*n=(3a-b)*(2a+2b)=6a^2+4a*b-2b^2=6*9+4*(-
令C=ta+vb(1)(注:t.v是实数,a,b是向量,以下一样)向量a=(1,2),向量B=(-2,3),向量C=(4,-7),(4,-7)=t(1,2)+v(-2,3)根据对应相等得到:4=t-2
│a│=2│b│=1│a-b│=2a*b=(a²+b²-(a-b)²)/2=(│a│²+│b│²-│a-b│²)/2=(4+1-4)/2=1
|a|=2,|b|=1(2a-3b)乘(2a+b)=94a平方-4ab-3b平方=94乘4-4|a||b|cos夹角-3=94|a||b|cos夹角=4cos夹角=1/2夹角=60°|a+b|的平方=
|a|=2,|b|=1,(2a-3b)(2a+b)=4|a|^2+2ab-6ab-3|b|^2=16-3-4ab=13-4|a||b|cosa=9得cosa=1/2,故a=60.即向量a与向量b的夹角
1、答案:A先将AC,BD算出,看它与已知哪一个有倍数关系.2、答案:0向量化简就可以了呀3、答案:AC三边中线矢量和为零(证法1:将每一条矢量中线看成为两临边矢量之和证法2:同三中位线构成三角形一样
设c=a+b,d=a-b,则|c|=2,|d|=3,cos=1/4.a=(c+d)/2,b=(c-d)/2.|c+d|=sqrt((c+d)^2)=sqrt(c*c+2c*d*cos+d*d)=sqr