已知向量a=1,b=根号2,a b=根号5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:32:23
|a+b|²=|a|²+2a*b+|b|²=1+2×1×√2×cos135°+(√2)²=3-2=1,则|a+b|=1
根号3乘以2分之1加上负1乘以根号2分之3等于0,所以这两个向量垂直
FX=X1X2+Y1Y2=SIN2X-根号3COS2X=2SIN(2X-π/3)T=2π/2=πMAX=2,MIN=-2
向量a-向量b与向量a垂直,则(a-b)•a=0,a^2=a•b,所以a•b=a^2=1.Cos=a•b/(|a||b|)=1/(1×√2)=√2/2.
以下"."表示点乘.因为a=(2,1),所以a^2=5.又因为a.b=10,|a+b|=根号50,所以50=|a+b|^2=(a+b)^2=a^2+2a.b+b^2=25+b^2.所以b^2=25.所
是a与b的夹角吧?|2a+b|=√7将它平方,得|2a+b|^2=74|a|^2+4a·b+|b|^2=7∵|a|=1,|b|=3∴4×1+4a·b+9=74a·b=-6∴a·b=-3/2∴cos=(
f(x)=向量a乘向量b=2sinx*√3cosx+(√2cosx+1)(√2cosx-1)=√3sin2x+2(cosx)²-1=√3sin2x+cos2x=2sin(2x+π/6)∴T=
向量a·向量b=丨向量a丨*丨向量b丨cos(a,b)=3*2*(9+4-7)/(2*3*2)=3
因为|2a-b|^2=4a^2-4a*b+b^2=4[(cosa)^2+(sina)^2]-4(√3cosa+sina)+(3+1)=8-8sin(a+π/3)最小值为8-8=0,所以|2a-b|最小
(1)*向量b=|a||b|cos夹角=正负根号2(2)|a+b|²=|a|²+|b|²+2a*b=1+2+2|a||b|cos60°=3+根号2所以a+b的模=根号下(
设这个夹角是α则cosα=ab/a的模b的模=(2a+λb)(λa-3b)/a的模b的模=(2λa²-6ab+λ²ab-3λb²)/a的模b的模=(2λ2-6√2cos4
以下全是向量:|a+b|²=a²+b²+2abab=|a|*|b|*cos120°=-|a|*|b|/2所以,|a+b|²=a²+b²+2a
f(x)=2sinxcosx+2√3(cosx)^2-1-√3=sin2x+√3cos2x-1=2sin(2x+π/3)-1(1)当2x+π/3=π/2,即x=π/12时,f(x)取得最大值f(π/1
向量a=(sinx,-1),向量b=((√3)cosx,-1/2),函数f(x)=(a+b)•a-2;已知a,b,c分别为三角形ABC内角A,B,C的对边,其中A为锐角,a=2√3,c=4
a·b=|a||b|cosx因为两向量平行所以cosX为1答案为1*根号2=根号2这么详细表太感动
设:b=(x,y)则:a*b=2x+y=10|a+b|^2=(x+2)^2+(y+1)^2=50x^2+4x+4+y^2+2y+1=50x^2+y^2=45-2(2x+y)=45-20=25|b|^2
设向量c的坐标为(x,y)则x方+y方=2设为一式由已知得(根号3-1)x=(根号3+1)y设为二式联立的x方=1/(4-2根号3)=1/(根号3-1)方所以x1=1/(根号3-1),y1=1/(根号