已知向量A与B,其中A向量的模等于根号2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:07:53
AD=BC 角B=30°a比b=AB比BC=1比2
画3个点A,B,C,设向量AB为a,AC为b,则向量CB为a-b由题意知向量AB,AC,CB的模相等,则三角形ABC为等边三角形向量a与b的和在CAB的角平分线上,则向量a与(向量a+向量b)的夹角为
分两种情况一.向量a,b都分别不与X轴Y轴平行.则此时因为向量a与向量b互相垂直,所以有K×M+2K=0得M=-2又因为向量a的模等于向量b的模,所以有1的平方+K的平方=【2K】的平方+M的平方此时
1∵a+2b与2a-b垂直∴(a+2b)●(2a-b)=0即2|a|²-2|b|²+3a●b=0∵向量a=(1,2),向量b的模=根√5/2∴2×5-5/2+3a●b=0∴a●b=
|a|=√5,|b|=√5/2(a+2b)(2a-b)=2|a|²-2|b|²-ab=10-5/2+3ab=0∴ab=-5/2∴cos=ab/(|a||b|)=(-5/2)/(5/
a*b=|a|*|b|*cos60°=2*1*1/2=1向量2a向量+kb向量与a向量+b向量垂直所以(2a+kb)(a+b)=02a²+2ab+kab+kb²=02*4+2*1+
a-b与b垂直,即:(a-b)·b=a·b-|b|^2=0,即:a·b=|b|^2a+2b与a-2b垂直,即:(a+2b)·(a-2b)=|a|^2-4|b|^2=0即:|a|^2=4|b|^2,即:
(3倍的向量A减去向量B)*(向量A加上2倍的向量B)=0易得,a向量点乘b向量=2/5即,a的模*b的模*它们的夹角的余弦=2/5所以,夹角余弦值=1/50
a,b直接表示向量a,向量b,表示向量a与b的夹角|a+b|=|a||b|coscos=|a+b|÷(|a||b|)=16÷(8×10)=0.2=arccos(0.2)=78.463°
在直角坐标系XOY中,在x轴正方向取OB=5,OA=3,BA=7得到三角形OAB,其中,向量a=向量AO向量b=向量OB向量c=向量BA根据余弦定理可求出cosAOB=-1/2AOB=120度向量a与
已知|a|=|b|=√3/3*|a+b|,不妨设|a|=|b|=√3/3*|a+b|=1,则由|a+b|=√3得(a+b)^2=3,展开得a^2+b^2+2a*b=3,所以a*b=1/2,因此cos=
不一定是,显然如果abc同向就是了,如果不是,考虑一个三角形的三条边,令一条为a另一条为b,第三边的三分之一为c,则等式满足,但这时候ab显然不是平行的再问:但我们老师说这道题平行的呀?这该如何解释呢
一.先把所求的式子写出来,平方,得到A的模的平方加上B的模的平方加上二倍的向量A乘以向量B二.A的模等于2B的模等于根号下3的平方加4的平方等于5向量A乘以向量B等于COS乘以A的模再乘以B的模(注:
90度.画个草图,把向量b的起点移到向量a的终点,t*b可以看做向量b的终点可以在向量b所在直线上滑动,问题可以看做是向量a的起点到向量b所在直线的距离最短,就是垂直了.
1:两边都平方|a+b|^2=|a-b|^2化简:a*b=02:夹角设为a,则cosa=a*b/(|a|*|b|)=-20/40=-0.5a=120度
求两个向量的夹角,最先想到的就是a*b=|a||b|*cosα(a为向量a与b的夹角,这里向量不是题目中a与b,只是个公式),所以要求b与a+b的夹角,我只要知道b(a+b)的值和|b|*|a+b|的
(1)因为a+2b与2a-b垂直,所以(a+2b)·(2a-b)=0即2a²-2b²+3a·b=0因为向量a=(1,2),向量b的模=根号5/2,所以a²=5,b&sup