已知向量a与b的夹角为45度,且向量a=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:56:08
∵(a-b)²=a²+b²-2|a||b|cos=4+1+2*2*1*cos60°=7∴|a-b|=√7又∵(a+2b)²=a²+4b²+4
作向量OA=a,OB=b,OC=c,依题意∠AOB=45°,向量a-c=CA,b-c=CB,∠ACB=135°,∴∠AOB+∠ACB=180°,∴O,A,C,B四点共圆,|c|的最大值是此圆的直径长,
再问:我还有一个问题,麻烦你看下,我是重新提问的再问:我还有一个问题,麻烦你看下,我是重新提问的再答:在哪里哦?没看到
ab=|a||b|cos(a,b)=2*1/2=1a(a+2b)=a^2+2ab=4+2=6(a+2b)^2=a^2+4ab+b^2=4+4+1=9a(a+2b)/(|a||a+2b|)=6/(2*3
两向量内积等于模长(绝对值)与夹角正余弦值的积,所以,要求内积为正.(同时必须去掉同向的情况)(a+λb)(λa+b)=λa^2+(λ^2+1)ab+λb^2=2λ+(λ^2+1)根号2*根号3*根号
|a-b|=√(a-b)²=√(a²+b²-2ab)=√13;9+16-2ab=13;2ab=12;ab=6;cos=ab/|a|×|b|=6/12=1/2;∴=60°;
若a、b夹角为B,则可设a=(3,0)b=(3^1/2cosB,3^1/2sinB)则a-b=(3-3^1/2cosB,-3^1/2sinB)a+2b=(3+2*3^1/2cosB,2*3^1/2si
设这个夹角是α则cosα=ab/a的模b的模=(2a+λb)(λa-3b)/a的模b的模=(2λa²-6ab+λ²ab-3λb²)/a的模b的模=(2λ2-6√2cos4
|a|=|b|=2a与b的夹角为60度leta+b,a的夹角=x|a+b|^2=|a|^2+|b|^2+2|a||b|cos60度=4+4+4=12|a+b|=2√3(a+b).a=|a+b||a|c
|a+b|^2=|a|^2+|b|^2+2|a||b|cos30度=9+4+6√3=13+6√3|a+b|=√(13+6√3)|a-b|^2=|a|^2+|b|^2-2|a||b|cos30度=9+4
∵lal=√2,lbl=3,=45°∴ab=3√2×cos45°=3∴(a+xb)(xa+b)=a²x+(x²+1)ab+xb²=2x+3(x²+1)+9x=3
(1)∵a·b=|a||b|cos(θ),θ为a、b夹角∴-2+2n=√5*√(4+n²)*(√2)/2------①两边平方化简得:8(n-1)²=5(4+n²)---
a=(x,y)│a│=1│b│=2√2ab=(√3-1)x+(√3+1)y[(√3-1)x+(√3+1)y]/2√2=√2/2(√3-1)x+(√3+1)y=2x²+y²=1x=-
a*c=0a*(a-b)=0a*a-a*b=0|a|×|a|×cos0-|a|×|b|×cos45°=0|a|²-(√2/2)|a|×|b|=0|a|/|b|=(√2/2)
a与b的夹角=30ºa.b=√3|a||b|cos30º=√3|b|=2/|a||a-b|^2=|a|^2+|b|^2-2a.b=|a|^2+|b|^2-2√3=|a|^2+4/|
因为各种符号比较麻烦,所以我写在了word上,这是截图,答案算出来比较繁琐,请检验
解a*b=/a//b/cos=2*1*1/2=1/a-b/=√(a-b)²=√a²-2ab+b²=√4-2+1=√3——模是√3和√7/a+b/=√(a+b)²
分析如下:求a与a+b的夹角的余弦,记夹角为ccosc=(a(a+b))/|a||a+b|=(a²+ab)/|a||a+b|---------------|a+b|可以根据图来判断出为2√3
根据已知可得a*b=|a|*|b|*cos60°=3,因此,由(a-b)^2=a^2+b^2-2a*b=9+4-6=7得|a-b|=√7.