已知向量组a1,a2,a3,证明向量组a1,a2,a3,a5-a4的秩为4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:08:17
设有k1,k2,k3,k4使k1(a1+a2)+k2(a2+a3)+k3(a3+a4)+k4(a4+a1)=0即(k1+k4)a1+(k1+k2)a2+(k2+k3)a3+(k3+k4)a4=0由题意
因为r(a1,a2,a3)=3,所以a1,a2,a3线性无关又因为r(a1,a2,a3,a4)=3,所以a1,a2,a3,a4相关所以a4可由a1,a2,a3线性表示.因为r(a1,a2,a3,a5)
证明:设:k1(a1+2a2)+k2(2a2+3a3)+k3(3a3+a1)=0整理得:(k1+k3)a1+(2k1+2k2)a2+(3k2+3k3)a3=0∵a1,a2,a3线性无关∴k1+k3=0
设k1(a1+a2)+k2(a2+a3)+k3(a3+a4)+k4(a4-a1)=0整理后得到(k1-k4)a1+(k1+k2)a2+(k2+k3)a3+(k3+k4)a4=0由于a1,a2,a3,a
证明:令k1(a1+a2)+k2(a2+a3)+k3(a3+a1)=0(k1+k3)a1+(k1+k2)a2+(k2+k3)a3=0因为向量组a1,a2,a3线性无关所以k1+k3=0k1+k2=0k
a2=(1,1,0)'a3=a1Xa2=(-1,1,2)
假设:a1+a2、a2+a3、a3+a1是线性相关的,则:a3+a1=m(a1+a2)+n(a2+a3)(m-1)a1+(m+n)a2+(n-1)a3=0因a1、a2、a3线性无关,则:m-1=0且m
(b1,b2,b3)=(a1,a2,a3)P,即B组可由A组线性表示.P=1111-2100-7因为|P|=-3*(-7)=21≠0所以P可逆.即有(b1,b2,b3)P^(-1)=(a1,a2,a3
对于向量组a1,a2,a3要线性相关,则k1*a1+k2*a2+k3*a3=0(其中k1,k3,k3不全为零)只要符合上式,就不是线性相关,而是线性无关例如A中的向量组k1*a1+k2*(3a3)+k
向量组a1,a2,a3的秩为3,这说明这个向量组线性无关,向量组的线性相关性与向量组中向量之间的次序无关,也与某一个向量的非零倍数无关.所以向量组a1,a3,-a2的秩也为3.再问:答案是2啊~~向量
两个向量组查相互线性表示所以两个向量组等价而等价的向量组秩相同所以第2个向量组的秩也是3
(b1,b2,b3)=11121-1-1121110-1-30231110-1-300-3满秩,所以线性无关
(2a1+3a2,a2-3a3,a1+a2+a3)=(a1,a2,a3)K其中K=2013110-31因为|K|=-1≠0所以K可逆所以r(2a1+3a2,a2-3a3,a1+a2+a3)=r(a1,
(b1,b2,b3)=(a1,a2,a3)KK=110121011-->110011000因为A组线性无关所以r(B)=r(K)=2
(2a1+a3+a4,a2-a4,a3+a4,a2+a3,2a1+a2+a3)=(a1,a2,a3,a4)KK=2000201011101111-1100由于a1,a2,a3,a4线性无关,则R(2a
(a1+a2,a2+a3,λa1+a3)=(a1,a2,a3)KK=10λ110011|K|=1+λ由已知r(K)=r(a1+a2,a2+a3,λa1+a3)=3所以λ≠-1.再问:那个行列式是怎么得
1*a1+0*a2+0*a3+(-1)*a1=0能找到一组不全为0的实数k1、k2、k3、k4使得k1*a1+k2*a2+k3*a3+k4*a1=0,故a1,a2,a3,a1线性相关
用定义设k1(a1+a2)+k2(3a2+2a3)+k3(a1-2a2+a3)=0重新分组:a1(k1+k3)+a2(k1+3k2-2k3)+a3(2k2+k3)=0因为a1,a2,a3线性无关,所以