已知命题:P:对任意a属于[1,2],不等式|5-m|
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 18:11:11
先解出P,QP:a^2-16
由(2x-a)(x+a)=0得x=a2或x=-a,∴当命题p为真命题时,−1≤a2≤1且-1≤-a≤1,解得-2≤a≤2且-1≤-a≤1,∴-1≤a≤1,即p:-1≤-a≤1.又当命题q为真命题时,“
解P:等同于a>1q:等同于a>0,且a^2-4a-4<0.即:0
∵命题P函数y=loga(1-2x)在定义域上单调递增;∴0<a<1(3分)又∵命题Q不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立;∴a=2(2分)或a−2<0△=4(a−2)2+1
x^2-5a-3>=根号(x^2-8)x^4+(5a+3)^2-(5a+3)x^2>=x^2-8x^4+(5a+3)^2+8-(5a+2)x^2>=0(x^2-5a-3)(x^2+1)>=0因为x^2
对于P命题:x∈[-1,1]时,化简此式:A^2-5A-3>=(X^2-8)^½得:-7≥A^2-5A-3>=-8解得(5+5^½)/2≥A≥(5-5^½)/
a>1.非p是假命题,则P是真命题,说明ax平方+2x+1>0对于任意x属于R恒成立,则△=4-4a<0且a>0,a>1
已知命题p:函数y=loga(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立若p∨q是真命题,求实数a的取值范围.考点:命题的真假判断与应用;函数
命题p为真,即有:x1和x2是方程x^2-mx-2=0的两个根x1+x2=mx1x2=2|x1-x2|=√(x1-x2)²=√[(x+x2)²-4x1x2]=√(m²+8
若命题p或q为真命题,求实数a的范围,可以先求命题p和q都为假时a的范围,然后除了这个范围以外的,就是命题p或q为真命题时a的范围.p:1-8a1/8,q:4a^2-4a>=0,a==1p为假时,a=
先看q:可知a大于等于2小于等于3.再看p:当a在q所在的区间里,根据双曲线可值p为假.故得已知条件同理:便得.时间匆忙,就没写的很详细了.见谅
p或q为假,则p为假且q为假.因此1.有两个或者没有实数满足,2.对于任意实数,f是小于等于01.Δ=0或Δ>0,2.a
解析:由命题p知,|m-5|
命题P:a≤x²,则a≤【x²在区间[1,2]上的最小值1】,则:a≤1命题Q:方程x²+2ax+2-a=0有解,则:△=4a²-4(2-a)≥0,得:a≤-2
若p或q为真,p且q为假表明了P是真或者Q是真两种情况而且每种情况都是一个真一个假的.所以应该分类讨论1.如果Q是真P是假,对于Q,由于函数开口向上,对于所有X都有Y小于零,就是没有实根.所以△<0根
“对任意x∈[1,2],x2-a≥0”.则a≤x2,∵1≤x2≤4,∴a≤1,即命题p为真时:a≤1.若“存在x∈R,x2+2ax+2-a=0”,则△=4a2-4(2-a)≥0,即a2+a-2≥0,解
命题P:a≤x²,则a≤【x²在区间[1,2]上的最小值1】,则:a≤1命题Q:方程x²+2ax+2-a=0有解,则:△=4a²-4(2-a)≥0,得:a≤-2
命题p可知1≥a命题q可知a不属于(-2,1)所以1≥a