已知四棱锥底面abcd为菱形,角bad等于60度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:12:13
已知四棱锥底面abcd为菱形,角bad等于60度
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中

1.是垂直的∵PA⊥面ABCD,AE∈面ABCD∴PA⊥AE∵ABCD是菱形,∠ABC=60°∴△ABC是正三角形又E是BC中点∴AE⊥BC又AD∥BC∴AE⊥AD∵PA∩AD=面PAD∴AE⊥面PA

已知四棱锥P-ABCD,底面ABCD为菱形,PA垂直平面ABCD,角ABC=60度,E,F分别是BC,PC的中点,证明A

这种题建系做不就行了么连接AE,可证AE垂直BC,以AE、AD、AP为所在直线分别为XYZ轴建立坐标系不防设AB=2,op向量设成(0,0,c)根据角度关系,标出坐标.最后可证明AF向量与PD向量乘积

四棱锥P-ABCD,PB垂直AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形

(1)先计算侧面PAD的高位√3,又该侧面于底成120度,所以P到ABCD的距离为√3/2*√3=3/2(2)可以用坐标法做,以底面菱形的中心为原点,对角线为两坐标轴建立坐标系

已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°

1/过P,向AD作PF⊥AD于F,连接BF,BD由于△PAD是正三角形,所以F为AD终点,又四边形ABCD为菱形,角DAB=60°,则△ABD为正三角形,即BF⊥ADPFB共面,可得AD垂直于面PFB

已知四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PA⊥平面ABCD,E为BC中点,求证:AE⊥PD.

连接AC所以三角形ABC为等边三角形AE平分BC所以AE垂直于BC因为AD//BC所以AE垂直于ADPA垂直于平面ABCD因为AE属于平面ABCD所以PA垂直于AE因为AE垂直于ADAE垂直于PAAP

空间角已知,四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别为BC、PC的中点,

(1)证明:∵E为BC的中点,∴AE∈平面ABCD,∵PA⊥平面ABCD,∴平面PAD⊥平面ABCD,∴PD⊥AE.

已知四棱锥p-ABCD,底面ABCD为菱形,PA垂直平面ABCD,角ABC=60°,E.F分别是BC.PC的中点.(1)

看这个在PAD平面,过A作AH'垂直PC于H'.连接AE、AH'、EH'提示:棱形∠ABC=60.所以EA⊥AC.设棱形边为a,则:AE=√3*a/2.又∵PA⊥ABCD.∴PA⊥EA∴EA⊥面PAC

数学立体几何如图所示,已知四棱锥p- ABCD,底面ABCD为菱形,且PA垂直于底面ABCD,M是PC上的任意一点,则下

分析:(1)取PB的中点为M连结AM,MF,利用已知条件证明AMFE是平行四边形,即可求证EF∥面PAB(2)利用已知条件通过直线与平面垂直的判定定理证明EF⊥面PBD(3)通过(2),利用BD⊥平面

已知四棱锥p-abcd中,底面abcd为菱形pa⊥平面abcd,∠abc=60度,e,f分别是bc,pc的中点

\x0d\x0d\x0d\x0d在PAD平面,过A作AH'垂直PC于H'.连接AE、AH'、EH'\x0d提示:\x0d棱形∠ABC=60.所以EA⊥AC.设棱形边为a,则:AE=√3*a/2.\x0

四棱锥P-ABCD的底面ABCD是菱形,PA垂直平面ABCD,点F为PC中点

1)连接AC,BD交与M,连接FM因为ABCD为菱形,所以M为AC中点又因为F为三角形PAC另一边中点,△CFM和△CPA相似(自己简单证下)所以PA平行于FM所以PA平行于BDF2)因为菱形ABCD

已知四棱锥P-ABCD的底面ABCD为菱形,E是PD的中点.求证:PB∥ACE

证:连结AC,BD交于O连结OE因为ABCD为菱形所以O为DB中点则OE为三角形DPB中位线所以OE平行于PB又因为OE属于平面ACE所以PB平行于面ACE这种问题一般借用三角形中位线

如图,已知四棱锥P-ABCD的底面ABCD是菱形,PA垂直于平面ABCD PA=AD=AC,点F为PC的中点

1.连接AC,BD交于点O连接FO因为F,O分别为PC,AC中点所以FO平行PA因为FO在平面BFD内,且PA不在平面BFD内所以PA平行于平面BFD2.这道题有空间直角坐标系做,我在这里就不具体写了

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA垂直面ABCD,角ABC=60度,E.F分别是BC.PC的中点

1、连接AC,得到ABC为一个等边三角形.所以,AE垂直BC,即AE垂直AD,又AE垂直PA,所以AE垂直PD.2、由于AE垂直PAD,任取一点H,交角正切值都是AE/AH,AE是一定值,所以取最大正

已知四棱锥P-ABCD的底面ABCD是菱形,PA垂直平面ABCD,点F为PC的中点.求PA平行平面B

应该是“求证:PA‖平面BFD”吧!证明:连结BD,AC交于点O,连结FO∵PA⊥BDPA‖FO(中位线)∴FO⊥BD∴平面BFD⊥平面ABCD∵PA⊥平面ABCDPA不在平面BFD上∴PA⊥平面BF

已知四棱锥P-ABCD的底面是菱形,E为PA的中点,求证:pc//平面BDE.

链接ACBD,就是把菱形的对角线画出来.我们知道菱形的两条对角线互相平分,就是交点是中点.设此点为F那么在三角形APC中E是AP中点F是AC中点.中位线定理,EF平行于PCF又是BD的中点所以EF在面

四棱锥P-ABCD中,侧面PCD为三角形,与底面ABCD垂直,已知ABCD是菱形,角ADC为60度,M为PB中点,求证P

(Ⅰ)取CD的中点E,连PE,AE因为△PCD为正三角形所以PE⊥CD又底面ABCD⊥侧面PCD,因为PE⊥底面ABCD∠ADC=60°,AD=AC,∴△ADC为正三角形,所以AE⊥CD由三垂线定理P

已知,正四棱锥O-ABCD中,底面四边形ABCD为菱形 ,M为OA的中点,N为BC的中点,求证:MN平行平面OCD.

正四棱锥O-ABCD中,底面四边形ABCD为菱形 ,M为OA的中点,N为BC的中点,求证:MN平行平面OCD.证明:取OD中点E,连接EM和CE∵M为OA的中点,N为BC的中点即EM为△OA