已知四边形ABD是菱形,E是CD延长线上一点,且EA=EB,EA垂直于EB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:25:03
已知四边形ABD是菱形,E是CD延长线上一点,且EA=EB,EA垂直于EB
已知空间四边形ABCD中,AC=BD,E、F、G、H分别是AB,BC,CD,DA的中点,求证:四边形EFGH是菱形 求详

∵E、F是AB,BC的中点所以EF=0.5AC且EF∥AC同理GH=0.5AC且GH∥AC,FG=0.5BD∴GH=∥EF,FG=EF∴EFGH是平行四边形∵FG=EF∴EFGH是菱形

如图,已知四边形ABCD是菱形,E,F,G,H,分别是AB,AD,CD,BC的中点 求证:四边形EFGH是矩形.

证明:因为ABCD是菱形,所以AB=DA,BC=CD且AC垂直BD,又因为EFGH为其各边中点,所以EF∥=AC∥=GH;EH∥=BD∥=FG;∠ABD+∠BAC=90,所以∠FEH=90,所以四边形

已知点E、F在正方形ABCD的对角线AC上,AE等于CF,求证四边形BFDE是菱形

正方形可知AB=BC=CD=AD∠BAC=∠DAC=∠BCA=∠DCA=45°又有题知AE=CF有边角边SAS可知△ABE=△BCF=△CFD=△AED所以BF=FD=DE=EB四条边都相等的四边形为

已知点E、F在正方形ABCD的对角线AC上,且AE=CF.求证:四边形BFDE是菱形.

∵四边形ABCD是正方形∴AD=BC∵AC是对角线∴∠DAC等于∠ACB∵AE=CF∴△ADE≌BFC∴BF=ED以此类推证出EB=BF=DF=ED∴四边形BFDE是菱形

四边形AFDE是菱形

解题思路:圆周角的性质定理是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/incl

已知:如图,四边形ABCD是棱形,F是AB上一点,DF交AC于E已知:如图,四边形ABCD是菱形,F

菱形有一个特点,AC对角线平分角A、角C.角BCD=角DCEBC=CDCE=CE所以△BCE≌△DCE所以角CBE=角CDE又AF//CD所以∠CDE=∠AFE所以∠AFD=∠AFE=∠CBE

如图 ,已知四边形ABCD中,AB=CD,E,F,G,H分别是BD,AC,AD,BC的中点,求证四边形EHFG是菱形.

在△=ABC中,因为F、H分别是AC,BC的中点,所以FH平行且等于1/2AB,同理可得EG=1/2AB,EH=1/2DC,GF=1/2DC,又因为AB=DC,所欲FH=EG=EH=GF,所以四边形E

已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于点E.

∠CBE=∠CDE∠CDE=∠AFDso∠AFD=∠CBE证明:∵∠CBE是△BFE的外角(已知)∴∠CBE=∠BEF+∠BFE(三角形的一个外角等于不相邻的两个内角和)同理可证:∠AFD=∠BEF+

如图,已知四边形ABCD是矩形,E,F,G,H,分别是AB,BC,CD,DA的中点.求证:四边形EFGH是菱形

1.AE=BE=CG=DG;AH=DH=BF=CF;角A、B、C、D都是直角,根据勾股定理,可以计算出EH、HG、GF、EF的长度,可知EH=HG=GF=EF,因此,EFGH是菱形.2.连接矩形的两条

已知:如图,四边形ABCD是菱形,G是AB上一点,DE交AC于点E

证明:∵ABCD是菱形∴∠BCE=∠DCE,CB=CD∵CE=CE∴△BCE≌△DCE∴∠CBE=∠CDE∵AB‖CD∴∠AGD=∠CDE∴∠AGD=∠CBE

已知,如图,四边形ABCD是菱形

(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1

如图所示,已知四边形ABCD是正方形,四边形AFEC是菱形,E,F,D在一直线上,求证:AE,AF三等分∠CAD.

huairendege的证明中,看不懂这一句:“E,F,D在一直线上,可以得出AI等于AH”.(题目给出的图确实太糟糕了,∠ECA=150°,画出来和135°一样,让人以为B、C、E共线.)有一个证明

如图,已知四边形ABCD中,AB=CD,E、F、G、H分别是BD、AC、AD、BC的中点.求证:四边形EHFG是菱形

证明:∵E、H分别为BD,BC的中点∴EH‖CD,EH=1/2CD同理可得FG‖CD,FG=1/2CD∴EH‖FG,EH=FG∴四边形EHFG是平行四边形同理可得FH=1/2AB∵AB=CD∴EH=E

如图,已知:四边形ABCD是矩形,点E、F分别在边BC、AD上,四边形AECF是菱形,AB=2,AD=5

/>设AE=x,由四边形AECF是菱形,则EC=x,BE=5-x在直角三角形ABE中,由勾股定理AB^2+BE^2=AE^2解得x=29/10所以S菱形AECF=EC*AB=58/10=29/5

已知,如图,在四边形ABCD中,AB=CD,E、F、G、H分别是BD、AC、AD、BC的中点,求证:四边形EHFG是菱形

证明:∵E、H分别为BD,BC的中点∴EH‖CD,EH=1/2CD同理可得FG‖CD,FG=1/2CD∴EH‖FG,EH=FG∴四边形EHFG是平行四边形同理可得FH=1/2AB∵AB=CD∴EH=E

如图,已知四边形ABCD是矩形,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是菱形

连接AC和BD∵E、F、G、H分别是AB、BC、CD、DA的中点∴EF=1/2AC,HG=1/2ACHE=1/2BD,FG=1/2BD∵ABCD是矩形∴AC=BD∴EF=HG=HE=FG∴四边形EFG

已知四边形abcd是菱形,角abd等于60度,ab等于2cm,求菱形的周长和面积

周长2×4=8面积(2×2√3)÷2=2√3(菱形的面积等于两条对角线乘积的一半)

如图,四边形ABCD是菱形,∠ABD=60°,AB=8cm

1求∠BAD,∠ABC的度数AB=AD所以∠ABD=∠ADB=60°所以∠BAD=180-60-60=60°∠ABC=180°-60°=120°2求菱形ABCD的周长和面积菱形ABCD的周长=4×边长

已知:在菱形ABCD中,E,F在AC上,且AE=CF.求证四边形DEBF是菱形

连接BD交AC于点OAC⊥BDAO=COBO=DO∵AE=CF∴EO=FO所以BEDFO组成的五个直角三角形全等∴BE=ED=DF=FB∴DEBF是菱形