已知四边形ACD中E,F分别是AB.AD边上的点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:28:11
首先题目写错了,应该是四边形ABCD,不是四边形ACBD证明:∵E,F分别是AB,BC边上的中点∴EF是三角形ABC的中位线∴EF∥AC且EF=AC/2同理,GH∥AC且GH=AC/2EH∥BD且EH
∵E、F是AB,BC的中点所以EF=0.5AC且EF∥AC同理GH=0.5AC且GH∥AC,FG=0.5BD∴GH=∥EF,FG=EF∴EFGH是平行四边形∵FG=EF∴EFGH是菱形
证明:∵E是AB的中点,H是BD的中点∴EH是△ABD的中位线∴EH=1/2AD同理:FG是△ACD的中位线,EG是△ABC的中位线,FH是△BCD的中位线∴FG=1/2AD,EG=1/2BC,FH=
证明:∵E、H分别为AB、BD的中点∴EH为三角形ABD的中位线∴EH‖AD,且EH=AD/2同理GF‖AD,且GF=AD/2∴EH‖GF,且EH=GF∴四边形EGFH是平行四边形
证明:如图∵AB=CD(已知) E.G为中点∴AE=BE=DG=CG(中点定义)又∵AD=CD(已知) &n
证明:因为G,E是BD,BC的中点所以GE是△BCD的中位线所以GE∥CD,GE=CD/2同理,FH∥CD,FH=CD/2所以GE∥FH,GE=FH所以四边形EGFH是平行四边形(一组对边平行且相等的
简单再问:好吧!再答:我做再答: 再答:早再答:对了再答:给好评再答:给嘛!再答:hi再问:谢谢。再问:很好!再问:很好!再问:错了我找你。再答:加入梦之都群368575682为你解答再问:
∵E,F,G,H分别是AB,CD,AC,BD的中点∴EH∥AD,且EH=1/2ADGF∥AD,且GF=1/2ADEG∥BC,且EG=1/2BCFH∥BC,且FH=1/2BC又∵AD=BC∴EH=GF=
取BD的中点O连接EO,FO则EO是△ABD的中位线,FO是△BCD的中位线∴EO=1/2AB,EO‖AB,OF=1/2CD,OF‖CD∵AB=CD∴OE=OF∴∠OEF=∠OFE∴∠OEF=∠BMF
E,F分别为AB,AD中点,那么EF就是三角形ABD的中位线,很明显EF∥BDBD又是三角形BCD上的一边,根据定理,平面外一条直线平行于平面内任意一条直线,那么这条直线就与平面平行所以EF∥平面BC
取BC中点M,连接EM、FM在三角形ABC中,EM为中位线,所以EM=1/2*AC同理可得FM=1/2*BD所以EM+FM=1/2*(AC+BD)在三角形EFM中,根三角形三边关系定理可得EF
解题思路:请填写破解该题的切入点、思路脉络及注意事项(20字以上),学生将对此进行打分度解题过程:你拍一张完整的图好吗?
如图,连结AC,BDEFGH是平行四边形.由E,F,G,H分别是AB,BC,CD,DA的中点可知EF,FG,GH,EH分别是三角形ABC,BCD,CDA,ABD的中位线,由定理:三角形的中位线平行于三
证明:连接EF,已知E、F分别是AB、BC的中点,所以EF平行AC,又因为AC属于平面ACD,EF不属于平面ACD,所以EF平行于平面ACD
取BD的中点为E,连接CE和AE,构成三角形ADC,则BD、AC间的距离就是AC到点E的距离:可计算出AE=CE=根号3,AC=2,所以AC到点E的距离是;根号[(根号3)^2-1]=根号2,也就是B
因为:E.F分别是AB.CD的中点,所以:AE=FC,又因为:AB‖CD所以:四边形AECF是平行四边形所以:AF‖EC同理:EG‖HF所以:四边形EHFG是平行四边形.
连接BD,因为E是AD中点,所以S△AEB=S△BDE因为F是BC中点,所以S△DFC=S△BDF所以S△AEB+S△DFC=S△BDE+S△BDF=S四边形BEDF=6所以S四边形ABCD=S△AE
(3)连接AC,BD.∠CAF=∠DBE,∠BED(=∠A+∠ADE=∠ADE+∠FGD=)∠AFC,∴△ACF∽△BED ED/FC=BD/AC=10/9.6=25/24
首先完成作图,连接EF∵在△ABD中,E、F分别为两边的中点∴AE:AB=AF:AD∴△ABD相似于△AEF∴EF//BD∵BD是平面BCD中的一条直线∴EF//平面BCD啊哈