已知四阶矩阵A的特征值分别为1,2,-1,3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:13:47
已知四阶矩阵A的特征值分别为1,2,-1,3
已知三阶矩阵A的特征值为-1,2,3,则(2A) ^(-1)的特征值为?

设λ是A的特征值,那么有:Ax=λx两边同乘2:2Ax=2λx两边同左乘2A的逆:x=2λ[(2A)^(-1)]x整理一下:[(2A)^(-1)]x=[1/(2λ)]x即1/(2λ)是(2A)^(-1

已知四阶矩阵A相似于B,A的特征值2、3、4、5.E为四阶单位矩阵,则|B-E|=______.

∵A相似于B,∴A与B具有相同的特征值,即B的特征值:2、3、4、5,于是,B-E的特征值为:2-1、3-1、4-1、5-1,即:1、2、3、4,而矩阵的行列式等于其所有特征值的乘积:∴|B-E|=1

线性代数问题,已知三阶矩阵A的特征值为-1,1,,则行列式

已知三阶矩阵A的特征值为-1,1,二分一,则行列式(A的负1次方+2I)的值是?我来给楼主答案:A的特征值为-1,1,1/2;则A^(-1)+2I的特征值为1,3,4;所以A^(-1)+2I的行列式=

已知n价可逆矩阵A的特征值为λ,则矩阵(2A)^(-1)的特征值为?

1/(2λ),基本上特征值和矩阵是满足普通的函数对应关系.

已知3阶矩阵A的特征值为1、2、-3,则它的逆矩阵的特征值是?

|λE-A|=0根为1,2,-3则|A|≠0(因为λ=0不是上面方程的根)设B是A的逆矩阵|λE-A|=0等价于|λAB-A|=0等价于|λB-E|=0(因为A是行列式不等于0)等价于|(1/λ)E-

已知二阶矩阵A的特征值为-1和2 求det(A-I)

行列式等于-2,计算过程如图.经济数学团队帮你解答,请及时采纳.

已知3阶矩阵的特征值为1,2,-3,求 A*+3A+2E

求特征值是吗A的绝对值-6A*+3A+2E的特征值=-6/x+3x+2为-15-5

已知3阶矩阵A的特征值为1,1,3,求|2A*|的值

|2A*|=2^3|A*|=8|A|^(n-1)=8|A|^2|A|=特征值的乘积=3所以原式=72再问:为什么|2A*|=2∧3|A*|,就这里不懂,麻烦给解释一下,再答:|kA|=k^n|A|

已知3阶矩阵A的特征值分别为1,2,3,|E+A|等于多少.

矩阵的对应行列式的值等于特征值的积.矩阵E+A的特征值为1+1、2+1、3+1,即2,3,4所以|E+A|=2*3*4=24.

已知三阶矩阵A的特征值为 -1,1,2,矩阵B=A-3A^2.试求B的特征值和detB.

因为B=A-3A^2所以2E+B=(E-A0(2E+3A)4E+B=(E+A)(4E-3A)10E+B=(2E-A)(5E+3A)又A的特征值为:-1,1,2所以det(2E+B)=0det(4E+B

三阶矩阵A的特征值为2,1,1,则矩阵B=(A*)^2+I的特征值为?

|A|=2*1*1=2A*的特征值为(|A|/λ):2/2=1,2/1=2,2/1=2(A*)^2+I的特征值为(λ^2+1):2,5,5再问:为什么A*的特征值为(|A|/λ)?再答:

线性代数题设三阶矩阵A的特征值为2,1,-1,B=2A*A-A+E,求|B|=已知四阶矩阵A满足|A+2E|=0,A*(

因为三阶矩阵A的特征值为2,1,-1所以|A|=2*1*(-1)=-2.因为A*=|A|A^-1=-2A^-1所以B=2A*A-A+E=-4E-A+E=-3E-A.取g(x)=-3-x则B的特征值为g

四阶矩阵A的特征值分别为1,2,-1,3,求A^2-A+E和tr(A*)

A^2-A+E的特征值为f(1),f(2),f(-1),f(3)其中f=x^2-x+1所以A^2-A+E的特征值为1,3,3,7又因为|A|=1*2*(-1)*3=-6所以A*的特征值为|A|/λ:-

已知三阶矩阵A的特征值为1,-2,3,则(2A)、 A^(-1)的特征值为?

|2A|的特征值为8*1.8*3.8*(-2)=8.-16.24A^(-1)的特征值为,1.-0.5.1/3再问:怎么算的呢??再答:公式

已知三阶可逆矩阵的特征值为1,3,4,求B=A+A2的特征值

先告诉你一个定理吧:若x是A的特征值,则f(x)是f(A)的特征值.(其中f(x)是x的多项式,f(A)矩阵A的多项式)那么你的问题答案就显而易见了,f(x)=x+x^2;所以B的特征值为飞f(1)、

已知3阶矩阵A的特征值为1、-1、2,则矩阵A2+2E的特征值为

A2的特征值为1,1,4A2+2E的特征值为3,3,6

已知三阶矩阵A的三个特征值为1,-2,3,则|A|=?A^-1的特征值为?A^T的特征值为?A*的特征值为?

|A|=1*(-2)*3=-6A^-1的特征值为1,-1/2,1/3A^T的特征值与A的特征值相同:1,-2,3A*的特征值为:|A|/λ:-6,3,-2

已知三阶矩阵A特征值为1 2 -3

对于矩阵函数f(A)来说,矩阵A有特征值a,那么f(A)就有特征值f(a)所以在这里,A有特征值1,2,-1那么B=f(A)=A^3-2A^2-A+2E那么特征值分别为f(1)=1-2-1+2=0f(

已知四阶方阵A相似于B ,A的特征值为2,3,4,5,则|B-I|=?(其中I为四阶单位矩阵)

四阶方阵A相似于B,A的特征值为2,3,4,5所以B的特征值为2,3,4,5B-I的特征值为2-1,3-1,4-1,5-1,即为:1,2,3,4所以|B-I|=1×2×3×4=24再问:为什么B的特征

设3阶矩阵A的特征值分别为 1 2 3,求|E+2A|

E+2A的特征值为3,5,7所以|E+2A|=105一般地,若A的特征值为λ,则f(A)的特征值为f(λ).其中f(λ)是多项式.再问:E+2A的特征值为3,5,7怎么算呢再答:一般地,若A的特征值为