已知圆c(x 1 2)^2 y^2=16和定点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:05:54
已知圆c(x 1 2)^2 y^2=16和定点
已知方程mx2+2x+1=0,若方程的两实数根为x1,x2,且x12+x22=1,求m的值

x1+x2=-2/mx1x2=1/mx1²+x2²=(x1+x2)²-2x1x2=14/m²-2/m=1即m²+2m-4=0m=-1±√5有解则4-4

已知x1、x2是方程x2-(k-2)x+k2+3k+5=0的两个实数根,则x12+x22的最大值是

 再答:啧,反了,等等再答: 再答:望采纳

23X12=?

23×12=23×(10+2)=23×10+23×2=230+46=276

二次函数y=mx²+4mx-2的图像与x轴交点坐标为x1及x2,且x12.求m取值范围

二次函数y=mx²+4mx-2的图像与x轴交点坐标为x1及x2,二次函数y=mx²+4mx-2过定点(0,-2),且x12.故m>0(即开口方向应向上,否则不可能出现一正根,一负根

已知二次函数y=x2+bx+c的图象过点M(0,-3),并与x轴交于点A(x1,0)、B(x2,0)两点,且x12+x2

∵函数y=x2+bx+c图象过点(0,-3),∴c=-3,∴函数解析式为y=x2+bx-3,又∵该二次函数图象与x轴相交于A(x1,0),B(x2,0)两点,所以方程x2+bx-3=0的两个根分别为x

已知直线l:y=-2x+m,圆C:x2+y2+2y=0

圆心到直线的距离d=(2-1-m)/根号5.直线和圆相离,d>r=1,所以m

已知二次函数y=-x2+bx+c的图象的对称轴为x=-1,图象与x轴交于点(x1,0),(x2,0)若x12 +x22=

方程的两根与方程y=-x²+bx+c中有如下关系:X1+X2=b,X1×X2=-c对称轴为直线x=b/2=-1,即:b=-2因图像与x轴交于点(x1,0)(x2,0)则:-x1²+

1.已知圆C:x^2+y^2-4x-6y+12=0

1.此圆圆心为(2,3),r=1设切线为y-5=k(x-3),整理得:kx-y-3k+5=0根据圆心到直线的距离等于半径列方程,得k=5/42.设直线x+y=a,再根据圆心到直线的距离等于半径列方程即

已知命题p1:函数y=ln(x+1+x2)是奇函数,p2:函数y=x12为偶函数,则在下列四个命题:

函数f(x)=ln(x+1+x2)的定义域为R,f(-x)+f(x)=0,∴函数y=ln(x+1+x2)是奇函数,∴命题p1为真命题;函数y=x12的定义域为[0,+∞),∴命题p2为假命题∴¬p1为

已知x1、x2是方程x2-(k-2)x+k2+3k+5=0的两个实数根,则x12+x22的最大值是(  )

由方程有实根,得△≥0,即(k-2)2-4(k2+3k+5)≥0所以3k2+16k+16≤0,所以(3k+4)(k+4)≤0解得-4≤k≤-43.又由x1+x2=k-2,x1•x2=k2+3k+5,得

已知x1,x2是方程mx2+2x+m的两个根,求x12+x22的最小值

∵x1,x2是方程mx2+2x+m=0的两个根∴x1+x2=-2/mx1x2=1△=4-4m²≥0,即-1≤m≤1但m≠0∴x1²+x2²=(x1+x2)²-2

已知圆C:x 2 +y 2 +2x﹣4y+3=0.

(1)∵切线在两坐标轴上的截距相等,∴当截距不为零时,设切线方程为x+y=a,又∵圆C:(x+1)2+(y﹣2)2=2,∴圆心C(﹣1,2)到切线的距离等于圆的半径,即,解得:a=﹣1或a=3,当截距

12.8X34.5+12.8X12.3+46.8X87.2=?

12.8*(34.5+12.3)+46.8*87.2=12.8*46.8+46.8*87.2=(12.8+87.2)*46.8=100*46.8=4680对吗?

已知x1、x2 是方程4x2-4mx+m+2=0的两个实根,当x12+x22 取最小值时,实数m的值

由题意可得x1+x2=m,x1•x2=m+24,△=16m2-16(m+2)≥0,∴m≥2,或m≤-1.当x12+x22=(x1+x2)2-2x1•x2=m2-m+22=(m−14)2-1716取最小

已知x1,x2,x3,…,xn中每一个数值只能取-2,0,1中的一个,且满足x1+x2+…+xn=-17,x12+x22

设有p个x取1,q个x取-2,有p−2q=−17p+4q=37,(5分)解得p=1q=9,(5分)所以原式=1×13+9×(-2)3=-71.(3分)

已知x1、x2是方程x2-(k-2)x+(k2+3k+5)=0的两个实根,则x12+x22的最大值是(  )

由方程有实根,得△≥0,即(k-2)2-4(k2+3k+5)≥0⇒3k2+16k+16≤0⇒(3k+4)(k+4)≤0⇒-4≤k≤-43.又由x1+x2=k-2,x1•x2=k2+3k+5,得x12+

已知圆C:(x+1)^2+y^2=8

根据已知条件可知PN是AM中垂线,故MN=AN,所以CM=CN+AN=2√2,故N点轨迹为以A、C为焦点的椭圆,有c=1,a=√2,可得b=1,故点N轨迹方程曲线为x^2/2+y^2=1此椭圆的参数方

已知圆C:x²+y²+2x-4y+3=0

⊙C的方程为:(x+1)^2+(y-2)^2=2,故圆心C点坐标为(-1,2),圆半径为√2.设P点坐标为P(x,y).在Rt△PCM中,|PM|^2=|PC|^2-|CM|^2=(x+1)^2+(y

已知实数x1、x2满足x12-6x1+2=0和x22-6x2+2=0,则x

∵方程x2-6x+2=0的两根之积为2,两根之和为6,∴x2x1+x1x2=x21+x22x1x2=(x1 +x2 )2−2x1x2x1x2=62−2×22=16.故答案为16.