已知圆O1和圆O2相交于A.B两点,公共弦AB=4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:05:39
1.因为AB垂直CD所以角ABC=角ABD=直角,直角所对弦为直径.2.连接CE与DF,角EBC与角DBF为对顶角所以相等,由同一圆弧所对圆周角相等可知,角EBC=角EAC,角FBD=角FAD所以角C
1)因为O1E是圆O2的直径所以∠O1AE=90因为A在圆上所以AE是圆O1的切线2)在直角三角形AEO1中,O1A=1,O1E=2R=3由勾股定理,得AE=2√2由△AO1E面积不变,得,(1/2)
因为AC为圆O2的切线,所以,∠CAB=∠AFB又因为∠BAC=∠CEB所以∠CEB=∠AFB所以CE∥AF再问:为什么∠CAB=∠AFB用做什么辅助线吗再答:弦切角等于所含弧上的圆周角
1,AC是圆O1的直径,所以∠ABC=90度,所以∠ABD=90度,即,AD是圆O2的直径2,AD是圆O2的直径,所以∠AO1D=90°,因为AO1=O1C,DO1⊥AC,所以DO1是AC的垂直平分线
证明:1、连接AB在圆O1中,AC是直径∴∠ABC=90°∴∠ABD=90°∴AD是圆O2的直径2、连接DO1(画图时忘记连了,自己连接)∵AD是圆O2的直径,O1在圆O2上∴∠AO1D=90°∴DO
(1)∠CAD+∠CBD=180°.证明:作公切线MN交CD于M,∵CD是⊙O1和⊙O2的公切线∴∠MDA=∠DBA∠MCA=∠CBM又∵∠MDA+∠MCA+∠DAC=180°∠DBM+∠MBC=∠D
根据C所外位置情况可分为两种情况,C在弧O₁A和 弧O₁B证明:(1)C在弧O₁A上时廷长O₁C交AD于F点;连接AO₁
解法一∵因为连心线垂直平分公共弦及弦所对的弧∴弧BO₂=弧AO₂∴在圆O₁中,∠O₂CA=∠O₂CB(等弧所对圆周角相等)又O₂
连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径,∠AO1D=90°,∵AO1=O1C,DO1⊥AC,∴DO1是AC的垂直
证明:(1)连接AC,AD∵B在⊙O1上且AB⊥BC∴∠ABC=90°∴AC是⊙O1的直径同理可得AD是⊙O2的直径(2)∠1=∠2∠1=∠3∠2=∠4∴∠3=∠4∴∠3+∠5=∠4+∠5∴∠CAD=
证明:(1)∵CD⊥AB∴∠ABC=90º∴AC是圆O1的直径【直径所对的圆周角为直角】(2)∵CD⊥AB∴∠ABD=90º∴AD为圆O2的直径∵AC=AD∴①O1C=O2B【=&
证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=
(1)证明:连接O1A;∵BC是⊙O1的切线,∴∠O1BC=90°.∵∠O1AP是圆O2的内接四边形的外角,∴∠PAO1=∠O1BC=90°,∴Q1A⊥AC,则AC是⊙O1的切线.(2)证明:连接AB
证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=
连接AB,根据圆的内接四边形的性质,易证得∠F+∠E=180°,因此CE∥DF,即四边形CDFE是平行四边形;由平行四边形的性质即可证得CE=DF.连接AB;∵∠CAB=∠F,CD∥EF;∴∠C+∠E
解题要领:①解答数学图形题,首先正确吃透题意,快速理解或画出图形;②准确的图形能帮助、引导自己快速形成思路;③这类题的解法,一般采用“倒推法”.证明思路:采用“倒推法”(1)要想证明出PA:AD=PC
连接AO1,BO1因为四边形AO1BD为O2的内接四边形,所以∠AO1B+∠D=180度因为∠D=30度所以∠AO1B=150度所以∠C=1/2∠AO1B=75度(圆周角等于圆心角的一半)
连接AB、AE.∵AC是⊙O1的直径,∴∠ABC=90°,∴∠ABE=90°,∵四边形ABED是圆O2的内接四边形,∴∠ADE=90°,在Rt△CDE中,CD=8,DE=6,∴CE=根号下(CD^2+
连接AB,BO2并延长BO2使其交圆O2与M.在圆O2中角AMB等于角D(同弧所对圆周角相等)在圆O1中角ABO2等于角O2CD(同弧所对圆周角相等)又因为BM为直径所以角BAM等于90度,所以角AB
根据题可知AO1=O1B=BO2=O2C=2所以O1AO2B是菱形易得AB=2倍根号3所以O1AO2B的面积是1/2*2*2倍根号3=2倍根号3