已知圆O:x2 y2=4,直线l:kx-y-k-1=0求圆心到直线l的距离的最大

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:06:27
已知圆O:x2 y2=4,直线l:kx-y-k-1=0求圆心到直线l的距离的最大
21.如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直于直线AB.点p时圆O上异于A,B的任意一点,

21.令圆心(0,0),A(-2,0),B(2,0),L:x=4,P(2cosz,2sinz)则AP与L交点为M[4,6sinz/(1+cosz)],BP与L的交点为N[4,2sinz/(cosz-1

已知圆o方程为x^2+y^2+4x-2y=0,直线 l 的倾斜角为45° 圆心o到直线l的距离为(根号2)求直线l的方程

直线(一般式):Ax+By+C=0坐标(Xo,Yo),那么这点到这直线的距离就为:(AXo+BYo+C)的绝对值除以根号下(A的平方加上B的平方)圆o的方程为(x+2)^2+(y-1)^2=(√5)^

已知圆O:x2+y2=1与直线l:y=kx+2

(1)当k=2时,直线l的方程为:2x-y+2=0-------(1分)设直线l与圆O的两个交点分别为A、B过圆心O(0,0)作OD⊥AB于点D,则OD=|2×0-0+2|22+(-1)2=25---

已知直线l与圆c:x的平方+y的平方+2x-4y+4=0相切,且原点o到l的距离为1,求此直线l的方程

(x+1)²+(y-2)²=1画出图,可得此直线y=1另外还有一条,根据点到直线的距离的公式,可以很快得出

已知直线l与圆C:x2+y2+2x-4y+4=0相切,且原点O到l的距离为1.求此直线l的方程.

圆C:x2+y2+2x-4y+4=0即为(x+1)2+(y-2)2=1∴圆心C(-1,2)当直线斜率不存在时不合题意;当直线斜率存在时,设直线方程为y=kx+b,则|b|1+k2=|−k−2+b|1+

已知直线L与圆C:X2+Y2+2X-4Y+4=0相切,且圆点O与L的距离为1.

原点O吧?不然两个条件不是重复的吗?圆C:X2+Y2+2X-4Y+4=0(x+1)^2+(y-2)^2=1圆心C(-1,2)因为相切,圆心C到直线L的距离等于圆的半径=1设直线L的方程为y=kx+b,

已知圆O:x^2+y^2=5,直线L:xcosa+ysina=1(0

圆O:x^2+y^2=5,圆心为原点O,半径r=√5直线L:xcosa+ysina=1(0<a<π/2)圆心到直线L的距离d=1/√(sin²a+cos²a)=1/1=

已知圆O的方程是x^2+y^2=1,直线l与圆O相切,若直线l的斜率等于1,求直线l的方程

直线y=x+bx-y+b=0圆心到切线距离等于半径圆心(0,0)半径1所以|0-0+b|/√(1²+1²)=1|b|=√2所以是x-y+√2=0和x-y-√2=0

已知直线L过点(-2,o),当直线L与圆x2+y2=2x有两个交点时,其斜率K的物质范围是多少?

x^2+y^2=2x(x-1)^2+y^2=1圆心(1,0)半径1过(-2,0)作圆的切线,切线与x轴夹角为asina=1/3tana=根号2/4所以斜率的取值范围是(-根号2/4,根号2/4)

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A,B的任意一点,直线PA

(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x

已知圆o:x2+y2=4,直线l:kx-y-k-1=0 求直线l与圆O的位置关系

由点到直线距离公式,圆心(0,0)到直线kx-y-k-1=0距离d=|-k-1|/√k^2+1=|k+1|/√k^2+1=√(k+1)^2/k^2+1=√1+[2k/(k^2+1)]

已知圆O:X平方+Y平方=4,点M(1,a)且a>0.问:若过点M有且只有一条直线L与圆O相切,求a的值及直线L的斜率.

过点M有且只有一条直线L与圆O相切说明M就在圆上所以:1+a2=4a=√3Kom=√3直线L的斜率-√3/3

已知圆O:X^2+Y^2=4点M(1,a)且a>0〈一〉若过M只有一条直线...L与圆O相切求a的值及直线的斜率

keyia将x=1代入圆方程得a值,斜率OM为a,因直线与OM垂直,直线斜率与a的乘积为-1.可得直线斜率

已知直线L与圆O相交于A.B两点.若圆心O到直线L的距离为6.且AB=6.试求出圆O的半径.

根据勾股定理:R^2=6^2+(AB/2)^2=6^2+(6/2)^2=45圆O的半径R=3√5

已知:如图,直线L与圆O相交于A、B两点.(1)若点O到直线L的距离为3,AB=8,求圆O的半径; (2)若圆O的半

设OE垂直于AB于点E所以E为AB中点又因为AB=8所以AE=4所以在RT三解形OAE中由勾股定理OA的平方=AE的平方+OE的平方OE=3所以OA=5所以半径=5一共有3个点.直线把圆分为两部分,一

已知圆O的方程是x^2+y^2=1,直线l与圆O相切,若直线l在y轴上的截距为根号2,求直线l的方程

y=kx+√2kx-y+√2=0圆心(0,0)到切线距离等于半径r=1所以|0-0+√2|/√(k²+1)=1√(k²+1)=√2k²=1k=±1所以y=x+√2和y=-

已知圆O:x^2+y^2=4,点P为直线l:x=4上的动点.若点A(-2,0),B(2,0),直线PA,PB与圆O的另一

设P、M、N的坐标分别为(4,m)、(x1,y1)、(x2,y2),则PA的方程为y/(x+2)=m/6,即y=m(x+2)/6代入圆的方程并整理得(m^2+36)x^2+4m^2x+4m^2-144

已知x-y=l,xy=2,求x3y-2x2y2+xy3的值.

∵x-y=l,xy=2,∴x3y-2x2y2+xy3=xy(x2-2xy+y2)=xy(x-y)2=2×1=2.