已知圆o为△abc的外接圆,bc为直径,点e在ab上,过点e作ef⊥bc,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:04:20
连接co,同弧所对的圆周角是圆心角的一半,角aoc就等于120°半径oa=oc所以角aco=30°
就说一下思路.圆心o坐标为xo,yoc坐标未xc,yc新园的圆心坐标是oc的中点.如果命名为z,则xz=(xo+xc)/2,yz=(yo+yc)/2半径是oc长度的一半.r=根号下(xo-xc)^2+
证明:(1)连接AD,∵∠BCD=∠BAC,∠CBE=∠ABC,∴△CBE∽△ABC,∴∠BEC=∠BCA=90°,∴∠CBA=∠ECA,又∵∠D=∠ABC,∴∠D=∠ACD,∴AC=AD.(2)连接
题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3
证:因为:M是AC的中点所以:AM=CM,且OM=OM所以:△OAM≌△OCM(边、边、边)由此得:∠AOP=∠COP(全等三角形对应角相等)连接OC,则OC=OA,且OP=OP所以:△AOP≌△CO
连结BE,∵CE为直径,∴∠CBE=90°=∠CDA,∵∠CAB=∠CEB(同弧所对的圆周角相等)∴∠ACD=∠BCE(等角的余角相等)
延长AO交圆O于D,连结CD,则三角形ACD为直角三角形,根据同弧所对的圆周角相等可得∠D=∠B在直角三角形ACD中SinD=SinB=3/4=AC/AD而AD=2R=16所以可求AC=12
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B
再问:最后看不清再答: 再答:这样呢再问:看清了
由正弦定理:a/sinA=2r,得2/sin60°=2r,r=(2/3)√3
再答:再问:好人呐再答:客气客气
如图,①连接BO,则∠AOB=2∠ACB=2*45°=90°,所以三角形AOB是直角三角形,则有AB=AO*√2=1*√2=√2,在△ABC中,AC/sin∠ABC=AB/sin∠ACB,AC=√2*
过A作AD⊥BC于D,△ABC中,AB=AC,AD⊥BC,则AD必过圆心O,Rt△ABD中,AB=5,BD=3∴AD=4设⊙O的半径为x,Rt△OBD中,OB=x,OD=4-x根据勾股定理,得:OB2
S=a^2-(b-c)^2=a^2-b^2-c^2+2bc据余弦定理:S=-2bccosA+2bc又:S=0.5bcsinA4(1-cosA)=sinA8sin^A/2=2sinA/2cosA/2si
外接圆圆心(0,b),x^2+(y-b)^2=R^21+b^2=R^29+4-4b+b^2=R^2b=3R^2=10外接圆x^2+(y-3)^2=10以C为圆心的圆(x-3)^2+(y-2)^2=r^
(1)∠EDF=∠ADB.对顶角相等=∠ACB.同一圆弧所对的圆周角相等=∠ABC.由AB=AC所得=∠ABD+∠DBC=∠ACD+∠DAC.同一圆弧所对的圆周角相等=∠CDF.三角形ACD的外角(2
等边三角形的外接圆半径为其内切圆半径的两倍,所以AO=4厘米AO延线交BC于D,则OD=2厘米.连接CO,设等边三角形的一边长为x,则CD=x/2.CD^2+OD^2=CO^2(x/2)^2+2^2=
连接BO,CO,角BOC是圆心角,和∠BAC是同弧,所以较BOC为60°,所以,半径为2cm,直径4cm
(1)证明:连接EC、BE.因AD平分
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B