已知圆O为△ABC的外接圆,点E是△ABC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:56:47
已知圆O为△ABC的外接圆,点E是△ABC
已知△ABC是等边三角形,⊙O为它的外接圆,点P在弧AB上,PA交BC于点E 求1,PE/PB=EC/AC

PB,PC,PE之间的关系是1/PE=1/PB+1/PC证明:作EF∥PC,交BP于点F∵∠BPE=∠BCA=60°,则△PEF是等边三角形∴PE/PC=BF/PB,EF/PB=PF/PB两式相加可得

已知:⊙O是△ABC的外接圆,AB为⊙O的直径,弦CD交AB于E,∠BCD=∠BAC.

证明:(1)连接AD,∵∠BCD=∠BAC,∠CBE=∠ABC,∴△CBE∽△ABC,∴∠BEC=∠BCA=90°,∴∠CBA=∠ECA,又∵∠D=∠ABC,∴∠D=∠ACD,∴AC=AD.(2)连接

已知圆O为三角形ABC的外接圆,边长为6,求圆O的半径

题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3

(2013•顺义区二模)已知:如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是⊙O外一点,PA切⊙O于点A,且

(1)证明:连接OB,∵OC=OB,AB=BP,∴∠OCB=∠OBC,∠PAB=∠PBA,∵AP为圆O的切线,∴∠PAB=∠C,∴∠PBA=∠OBC,∵∠ABC=90°,∴∠OBC+∠OBA=90°,

如图,在四边形ABCD中,∠ABC=∠ADC=90°.若△ABC的外接圆为圆O,试判断点D与圆O的位置关系,说明理由

D在圆上.理由如下:∵∠ABC=90°,∴△ABC的外接圆的直径就是斜边AC.由∠ADC=90°,∴D点在圆上.如果∠ADC>90°,D在圆内,如果∠ADC<90°,D在圆外.D不能在直线AC上.

如图,已知⊙O是△ABC的外接圆,⊙O半径为8,sinB=3/4,则弦AC的长为?

延长AO交圆O于D,连结CD,则三角形ACD为直角三角形,根据同弧所对的圆周角相等可得∠D=∠B在直角三角形ACD中SinD=SinB=3/4=AC/AD而AD=2R=16所以可求AC=12

如图,点I为△ABC内心,AI交△ABC的外接圆O于D,DE‖BC,DE交AC的延长线于E

因为o为三角形ABC外接圆圆心,即为中垂线的交点,所以OD垂直于BC,又BC//DE,所以OD垂直于DE,所以DE为圆O的切线

已知在三角形ABC中,AB等于AC,圆O为三角形ABC的外接圆,CD为圆O的直径,DM平行于AC

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B

已知:如图,⊙O是△ABC的外接圆,点I为△ABC的内心,AI的延长线与BC相交于点D,与⊙O相交于点E,延长AE到

证明:连接CICE因为I是三角形ABC的内心所以AE平分角BACCI平分角ACB所以角BAE=角CAE角ACI=角BCI因为角BAE=角BCE=弧BE/2因为角CIE=角ACI+角CAE因为角ECI=

已知圆O是边长为2的等边三角形ABC的外接圆,求圆O的半径

 再问:最后看不清再答: 再答:这样呢再问:看清了

已知圆O是边长为2的等边三角形ABC的外接圆.求圆O的半径!

由正弦定理:a/sinA=2r,得2/sin60°=2r,r=(2/3)√3

如图所示,⊙O是△ABC的外接圆,已知∠ACB=45°,∠ABC=120°,⊙O的半径为1.

如图,①连接BO,则∠AOB=2∠ACB=2*45°=90°,所以三角形AOB是直角三角形,则有AB=AO*√2=1*√2=√2,在△ABC中,AC/sin∠ABC=AB/sin∠ACB,AC=√2*

(2009•威海)已知⊙O是△ABC的外接圆,若AB=AC=5,BC=6,则⊙O的半径为(  )

过A作AD⊥BC于D,△ABC中,AB=AC,AD⊥BC,则AD必过圆心O,Rt△ABD中,AB=5,BD=3∴AD=4设⊙O的半径为x,Rt△OBD中,OB=x,OD=4-x根据勾股定理,得:OB2

如图所示,圆O为△ABC的外接圆,且AB=AC,过点A的直线

(1)∠EDF=∠ADB.对顶角相等=∠ACB.同一圆弧所对的圆周角相等=∠ABC.由AB=AC所得=∠ABD+∠DBC=∠ACD+∠DAC.同一圆弧所对的圆周角相等=∠CDF.三角形ACD的外角(2

如图已知圆O为三角形abc的外接圆,∠A=30°,bc等于2cm,求圆o的直径(初三知识)

连接BO,CO,角BOC是圆心角,和∠BAC是同弧,所以较BOC为60°,所以,半径为2cm,直径4cm

已知在△ABC中,AB=AC,圆O为△ABC的外接圆,CD为圆O的直径,DM//AC交AB于M.

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B

圆O是△ABC的外接圆,∠BAC的平分线交圆O于点D,弦DC=2根号3,圆心O到弦BC的距离为1,则圆O的半径为?

连结OD交BC于点H,延长DO交圆O于点E,连结CE.因为AD是角BAC的平分线,所以弧BD=弧CD,因为DE是圆O的直径,所以DE垂直于BC于H,(垂径定理)角DCE=90度(直径所对的圆周角是直角