已知圆O为△ABC的外接圆,点E是△ABC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:56:47
PB,PC,PE之间的关系是1/PE=1/PB+1/PC证明:作EF∥PC,交BP于点F∵∠BPE=∠BCA=60°,则△PEF是等边三角形∴PE/PC=BF/PB,EF/PB=PF/PB两式相加可得
证明:(1)连接AD,∵∠BCD=∠BAC,∠CBE=∠ABC,∴△CBE∽△ABC,∴∠BEC=∠BCA=90°,∴∠CBA=∠ECA,又∵∠D=∠ABC,∴∠D=∠ACD,∴AC=AD.(2)连接
题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3
(1)证明:连接OB,∵OC=OB,AB=BP,∴∠OCB=∠OBC,∠PAB=∠PBA,∵AP为圆O的切线,∴∠PAB=∠C,∴∠PBA=∠OBC,∵∠ABC=90°,∴∠OBC+∠OBA=90°,
D在圆上.理由如下:∵∠ABC=90°,∴△ABC的外接圆的直径就是斜边AC.由∠ADC=90°,∴D点在圆上.如果∠ADC>90°,D在圆内,如果∠ADC<90°,D在圆外.D不能在直线AC上.
延长AO交圆O于D,连结CD,则三角形ACD为直角三角形,根据同弧所对的圆周角相等可得∠D=∠B在直角三角形ACD中SinD=SinB=3/4=AC/AD而AD=2R=16所以可求AC=12
因为o为三角形ABC外接圆圆心,即为中垂线的交点,所以OD垂直于BC,又BC//DE,所以OD垂直于DE,所以DE为圆O的切线
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B
证明:连接CICE因为I是三角形ABC的内心所以AE平分角BACCI平分角ACB所以角BAE=角CAE角ACI=角BCI因为角BAE=角BCE=弧BE/2因为角CIE=角ACI+角CAE因为角ECI=
再问:最后看不清再答: 再答:这样呢再问:看清了
由正弦定理:a/sinA=2r,得2/sin60°=2r,r=(2/3)√3
再答:再问:好人呐再答:客气客气
如图,①连接BO,则∠AOB=2∠ACB=2*45°=90°,所以三角形AOB是直角三角形,则有AB=AO*√2=1*√2=√2,在△ABC中,AC/sin∠ABC=AB/sin∠ACB,AC=√2*
过A作AD⊥BC于D,△ABC中,AB=AC,AD⊥BC,则AD必过圆心O,Rt△ABD中,AB=5,BD=3∴AD=4设⊙O的半径为x,Rt△OBD中,OB=x,OD=4-x根据勾股定理,得:OB2
(1)∠EDF=∠ADB.对顶角相等=∠ACB.同一圆弧所对的圆周角相等=∠ABC.由AB=AC所得=∠ABD+∠DBC=∠ACD+∠DAC.同一圆弧所对的圆周角相等=∠CDF.三角形ACD的外角(2
连接BO,CO,角BOC是圆心角,和∠BAC是同弧,所以较BOC为60°,所以,半径为2cm,直径4cm
(1)证明:连接EC、BE.因AD平分
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B
连结OD交BC于点H,延长DO交圆O于点E,连结CE.因为AD是角BAC的平分线,所以弧BD=弧CD,因为DE是圆O的直径,所以DE垂直于BC于H,(垂径定理)角DCE=90度(直径所对的圆周角是直角