已知圆o是三角形的內切圆,切点为def,如果,ae=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:01:08
已知圆o是三角形的內切圆,切点为def,如果,ae=1
已知ab是圆o的直径 do垂直于ab于点o,cd是圆o切线,切点为c,求证角dce等于角dec

参考:如图所示,已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C,若D为AD中点,求证:直线CD是圆O的切线证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对

如图,在平面直角坐标系中,已知A(8,0),B(0,6)两点,圆O`为三角形AOB的内切圆,切点分别为E.F.G,点D是

因BO=6,AO=8则AB=10又容易证明△ADC相似于△ABOAC/AO=AD/AB(AO-CO)/AO=(AB-BD)/AB1OC+OB=9,OC=9-OB2将2代入1可得BD=5用三角形相似可求

已知圆O内切于三角形ABC,切点为D,E,F,且AB=AC=10cm,BC=6cm,求DE的长

设ABD=X,BF=Y,CE=Z∵圆O内切于三角形ABC∴AE=AD=X,BD=BF=Y,CF=CE=Z∵AD+BD=AB=10,AE+CE=AC=10,BF+CF=BC=6∴X+Y=10,X+Z=1

已知圆O是三角形ABC的内切圆,切点D,E,F,如果AE=1,CD=2,BF=3,且三角形ABC的面积为6,求内切圆的半

半径为1其实不需要“三角形的面积为6”这个条件也可以解了.画一个三角形ABC,内切圆圆心为O,半径R=OD=OE=OF.因为OA=OA,OE=OD,∠AEO=∠ADO=90°,所以△OAE=△OAD,

如图,已知AB是圆O的直径,CD、AB分别是圆O的切线.切点分别为D、B,求证OC平行AD

图不对哦证明:连接OB、OD∵CD、CB是圆O的切线∴∠ODC=∠OBC=90°∵OD=OB,OC=OC∴△OBC≌△ODC∴∠COB=∠COD∵OA=OD∴∠A=∠ODA∵∠BOD=∠A+∠ODA=

已知AB是圆O的直径,BC是圆O的切线,切点为B,OC平行于AD,求证DC是圆O的切线

OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则

如图,已知PA、PB是圆O的两条切线,A、B为切点,

证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO

已知,如图,PA、PB是圆O的切线,A、B是切点,连接OA、OB、OP

1.因为PA为圆O切线所以∠OAP等于90度又因为∠AOP=60°所以∠APO等于30度所以角∠OPB等于30度(这个没什么好说的)2.因为∠APO=∠OPBOP=OP∠COP=∠DOP所以△cop全

几何证明选讲5.如图,三角形ABC是圆O的内接三角形,PA是圆O 的切线,A为切点,PB交AC于点E ,交圆O 于点D

因为PA是圆O的切线,A为切点,所以角PAC=弧ADC所对的圆周角=角ABC=60度,又因为PE=PA,所以三角形PAE是等边三角形.PA^2=PD*PB=1*(1+8)=9PA=PE=AE=3DE=

如图,圆O是三角形ABC的内切圆,切点分别是D,E,F.已知角BCA=90度,AD=5cm,DB=3cm.求三角形ABC

AD=AF=5cm,BD=BE=3cm,CF=CE=半径(r)(3+r)^2+(5+r)^2=64(根据勾股定理)2×r^2+16r+34=642×r^2+16r-30=0r=(-16±√(16^2+

如图,圆O是三角形ABC的内切圆,D、E、F分别是切点,判定三角形DEF的形状(按角分类),并说明理由.

锐角三角形∠DEF=90°-1/2∠A∠EDF=90°-1/2∠B∠EFD=90°-1/2∠C都是锐角,所以是锐角三角形

如图 ,圆o是三角形abc的内切圆,切点分别为d,f,e,AB=AC=13,BC=10.求园O的半

连接AD,勾股定理能算出来,BD=BE=5得出AE=8,设半径X,在直角三角形AOE中得出方程,解出半径再答:口算结果3分之10,方法就是这,结果没仔细算,你自己再好好算算再问:具体过程。。再答:AD

圆O是三角形ABC的内切圆,切点是D,E,F,三角形ABC的周长为18,BC=6求AE 重要的是过程

因为圆O是三角形ABC的内切圆,切点是D,E,F所以AF=AE,BD=BF,CD=CE,所以2AE=AF+AE=(AB-BF)+(AC-CE)=AB+AC-(BF+CE)=(AB+AC)-(BD+CD

已知三角形ABC的内切圆圆O,点D、E、F为切点,且∠A=50°,求∠FDE的度数

连结OEOF已知△ABC的内切圆O,E为AC边上的切点,F为AB边上的切点,∴OE垂直ACOF垂直AB角AEO=∠AFO=90在四边形AFOE中四边形内角和=360所以∠FOE=130∠FDE=1/2

已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C

设圆O的半径为R则BC=2R则PB=PC+BC=4+2R因PA切圆O于A则AP²=PC·PB36=4×(4+2R)R=5/2再问:再答:设圆O的半径为R∵AP切圆O于A∴AP²=P

已知P是圆O外一点,PA,PB是圆O的两条切线,切点分别是A,B,BC是直径.求证AC平行OP

证明:连接OA,OB,AB∵PA,PB是⊙O的切线∴∠OAP=∠OBP=90°∵OA=OB,OP=OP∴△OAP≌△OBP∴PA=PB,∠APO=∠BPO∴AB⊥PO∵BC是直径∴∠BAC=90°即A

圆o是三角形ABC的内切圆,D,E,F是切点,点D,E,F分别在AB,BC,CA上,问:三角形DEF的形状.

为锐角三角形,△DEF的三个内角∠AFD=∠DEF,∠BDE=∠DFE,∠CEF=∠EDF.(这是一个性质下面附图)而∠AFD,∠BDE,∠CEF分别是等腰△ADF,等腰△BDE,等腰△CEF的底角,

如图圆O是三角形ABC的内切圆圆切点切点分别为D、E、F AB=AC=13BC=10求圆O的半径.

=2,自己看书去,等腰三角形内切圆的圆点在于底边的垂线的1/3处