已知圆o的半径为2,弦ab等于2,ac等于2倍的更号3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 21:03:23
已知圆o的半径为2,弦ab等于2,ac等于2倍的更号3
已知AB是圆O的直径,弧AC的度数为60°,如果圆O的半径为2cm,那么弦AC的长为?

OA=OC=半径,角AOC=60°三角形OAC就是等边三角形AC弦=2

如图所示,已知⊙O的半径为30cm,弦AB=36cm,则cos∠OAB等于(  )

过O作OC⊥AB,可得C为AB的中点,∵AB=36cm,∴AC=12AB=18cm,在Rt△AOC中,OA=30cm,AC=18cm,则cos∠OAB=ACOA=1830=35.故选A

如图,已知圆O的半径为r,弦AB垂直平分半径OC,则弦AB长为

勾股定理得,r^2=1/4r^2+(1/2ab)^2所以 (1/2ab)^2=3/4r^2所以1/2ab=二分之根号3倍的r所以ab=根号3倍的

圆O的两条弦AB,CD互相垂直,垂足为E,且AB=CD,已知CE等于1,ED=3,求圆O的半径

作OM垂直AB于M,ON垂直CD于N;则CN=DN.又AB垂直CD,则四边形OMEN为矩形;又AB=CD,则OM=ON,即四边形OMEN为正方形.CD=CE+ED=4,则DN=2;EN=ED-DN=1

已知如图,MN是圆O的弦,AB是圆O的直径,AB垂直于MN,垂足为点P,半径OC,OD分别交MN于点E,F,且OE等于O

∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直

已知,在圆O中,弦AB的长是半径是半径OA的根号3倍,圆O的直径为2,C为弧AB的中点,求四边形O

很高兴为您解答.可知:则AD=BD=(r根号3)/2直角三角形AOD中解得OD=r/2因此OD=DC=r/2所以四个直角三角形AOD,BOD,ADC,BDC全等所以四条边相等所以为菱形则面积=根三/2

已知圆O的半径为5,弦AB的长也是5,求圆心O到AB的距离

如图,连结OAOB∵AB=AO=BO∴等边△BAO∴∠DAO=60°∵AO=5∴OD=2分之5倍根号3不懂接着问我再问:图呢再答:

圆O的半径为5厘米,弦AB等于弦CD,AB等于6厘米,CD等于8厘米.求AB与CD的距离

是弦AB∥弦CD吧,根据勾股定理可得,点O到AB的距离为√(5^2-3^2)=4厘米,点O到CD的距离为√(5^2-4^2)=3厘米,当AB与CD在圆心同侧时,AB与CD的距离=4-3=1厘米,当AB

已知圆O中,圆心O到弦AB的距离等于半径的一半,那么劣弧AB所对的圆心角度数为

选D设OD⊥AB于D,则在Rt△AOD中,OD=1/2OA,∴∠OAD=30°,∠AOD=60°,劣弧AB所对的圆心角∠AOB=120°再问:有没有图再答:AB当然不是直径,但是OD等于半径OA的一半

已知圆O的半径为4,弦AB的长等于半径,则圆心O到AB的距离

运用弦于圆心的关系,过圆心做弦的垂线,求的O到AB的距离为2倍的根号3

已知半径为1的圆o中两条弦AB=根号2,AC=根号3,则BC等于

三角形ABC中,H是A到BC的高,则外接圆半径为r,存在以下公式:2r=AB*AC/HH=AB*AC/(2r)=根号3*根号2/2=根号6/2所以BC=根号(AC^2-H^2)+根号(AB^2-H^2

已知半径为10的圆O中,弦AB的长为10.

(1)由⊙O的半径r=10=AB,知△AOB是等边三角形,∴α=∠AOB=60°=π3.(2)由(1)可知α=π3,r=10,∴弧长l=α•r=π3×10=10π3,∴S扇形=12lr=12×10π3

已知半径为5的圆o中,弦ab等于5根号2,弦ac等于5,则角boc的度数是多少

150°C、A、B在圆上,在三角形ACO中,AO=CO=5,XC=5,所以三角形ACO为等边三角形,角COA=60°在三角形ABO中,AO=BO=5,AB=5倍根号2,因此三角形ABO为等边直角三角形

已知圆O半径为1,弦AB、AC长为根号2,根号3,则角BAC的度数为?

连OA、OBOA=OB=1so,OA:OB:AB=1:1:根号2so,∠OAB=45°作OD⊥于ACso,AD=二分之根号3因为OA=1所以∠OAD等于30°so,∠CAB=45°+30°=75°

AB为圆⊙O的直径,弦CD垂直AB于E,角CDB等于15度,OE等于2倍根号3,求⊙O半径

角DCB=角CDB=15度角CBO=75度角COE=30度半径OC=OE/cos30°=2根号3/[(根号3)/2]=4⊙O半径=4

已知圆O的半径为根号2,弧AB=90度,求弦AB的长

连结弧两端与圆心,构成一三角形,弧=90度,圆心角=90度,三角形为直角三角形因半径相等,可根据勾股定理算得2*R2=AB2AB=2

已知圆O的半径为R,弦AB与CD互相垂直,连接AD、BC

证明:连接DO,延长交圆于E.连接AEDE是直径,AD与AE垂直