已知圆O的直径AB=6,半径OC垂直AB,点D是弧BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:29:56
已知圆O的直径AB=6,半径OC垂直AB,点D是弧BC
(圆)已知圆O,PQ为圆O切线,AC垂直于PQ于点C,交元O于点D AB为直径.AD=2 TC=根号3 求半径的长

连OD,过O作AD的垂线,垂足交AD于E.AE=AD/2=1OE=TC=√3因为AC、OT分别垂直于TQ在直角三角形AEO中,AO是半径勾股定理:AO=√[(√3)^2+1^2]=2半径的长=2

已知PA⊥圆o所在的平面,AB是圆o的直径,AB=2,C是圆

解题思路:线面关系解题过程:见附件最终答案:略

已知AB是圆O的直径,弧AC的度数为60°,如果圆O的半径为2cm,那么弦AC的长为?

OA=OC=半径,角AOC=60°三角形OAC就是等边三角形AC弦=2

已知AB是圆O的直径,CD是圆O的一条弦,并且弦AB⊥CD于点E,∠COD=120°,圆O的半径为8cm ,求弦CD的长

∵∠COD=120°CO=DO∴∠COE=∠DOE=60°又∵AB⊥CD∴∠C=∠D=30°又∵OD=8cm∴OE=4cm∴在RT△OED中ED=根号下OD²+OE²=根号下8&#

如图,已知圆O的直径AB=8,半径OC垂直AB,且OC是O1的直径,圆O2分别与圆O外切,与圆O1外切,与AB相切.

郭敦顒回答:(1)∵AB是⊙O的直径,半径OC⊥AB,且OC是⊙O₁的直径,∴⊙O₁与AB相切于O,⊙O₁与⊙O相切于C.(2)∵AB=8,⊙O₂分别与

如图,已知圆O的直径AB=8,半径OC垂直AB,且OC是O1的直径,圆O2分别与圆O内切,与圆O1外切,与AB相切.

易知R=4,r1=2令圆O2半径为r2连接OO2、O1O2过O2作O2D⊥OC,交OC于D依题并由勾股定理有:(r1+r2)^2-(r1-r2)^2=(R-r2)^2-r2^2解得r2=1

已知AB是圆O的直径,半径OC垂直于AB,D为任意一点,E为弦BD上的一点,且BE=AD 求证:

你这题好像,说的不完整哟.比如,D为那里的任意一点是弦上?还是OC上?

已知:如图,AB是圆O的直径,半径OC垂直于AB,M是OC中点,圆O的弦EF过点M且与AB平行.求证:角CBE=2角AB

连接OE,OM=OC/2=OE/2,OC垂直于AB,角OEM=30度.EF//AB,角AOE=角OEM=30度.[内错角]角EOC=90度-角OEM=90度-30度=60度.角CBE=角EOC/2=3

已知圆O的半径为6,AB是圆O的一条直径,C是直径AB上的一点,过点C作CD垂直AB,交圆O于点D,若CD等于三倍根号3

①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+

如图,已知AB是圆o的直径,P为延长线上的一点,pc切圆o于c,cd垂直ab于d,又pc=4圆o的半径为3,求cd的长度

∵pc与圆O相切,oc为圆O半径∴pc垂直于oc,△ocp为直角三角形根据勾股定理,∴op=√3^2+4^2=5∵S△ocp=S△ocp且cd垂直于ab∴(oc*cp)/2=(cd*op)/2即(3*

已知,在圆O中,直径AB⊥弦CD,E为垂足,AE=4,CE=6,求圆O的半径,如图

连接CO,设半径CO=R.则OE=OA-AE=R-4.OE^2+CE^2=CO^2,即(R-4)^2+36=R^2,R=6.5

已知,在圆O中,弦AB的长是半径是半径OA的根号3倍,圆O的直径为2,C为弧AB的中点,求四边形O

很高兴为您解答.可知:则AD=BD=(r根号3)/2直角三角形AOD中解得OD=r/2因此OD=DC=r/2所以四个直角三角形AOD,BOD,ADC,BDC全等所以四条边相等所以为菱形则面积=根三/2

已知,在圆O中,弦AB‖CD,若AB=6,DC=8,且AB、CD的距离为7,求圆O的半径

√【r²-(8/2)²】+√【r²-(6/2)²】=7r=5

如图,已知圆O的半径为4,CD是圆O的直径,AC为圆O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC

(1)证明:连接AO,因为△ABC中,AB=AC,∠ABC=30°,所以∠ACB=∠ABC=30°,即∠BAC=120°,又因为OA=OC所以∠OAC=∠OCA=30°,因此∠OAB=90°,即OA⊥

(2011?西城区二模)如图,AB是圆O的直径,P在AB的延长线上,PD切圆O于点C.已知圆O半径为3,OP=2,则PC

连接OC,∵AB是圆O的直径,P在AB的延长线上,PD切圆O于点C.圆O半径为3,OP=2,∴PB=2-3,PA=2+3,∴PC2=PB?PA=(2?3)(2+3)=1,∴PC=1.在Rt△OCP中,

如图,半圆O 的直径AB=12,半径OC⊥AB,圆O'与半圆O相内切,并且OB,OC相切于点D,E,求圆O’的半径

设圆O’的半径x,则OD=O'E=x==>OO'=√2x根据题意知OE=OO'+O'E==>6=√2x+x(OE=AB/2)解此方程得x=6(√2-1)故圆O’的半径6(√2-1).

已知:圆O中,半径OC垂直直径AB,弦BE过OC中点D,若圆O半径为4厘米,求BE的长.

根号5分之16利用三角形相似性连接EA,则三角形BDO和BAE相似则:BD/AB=OB/BEBD利用勾股玄定理求得是2倍根号5则BE==AB*OB/BD=32/2倍根号5==根号5分之16

已知AB、CD为圆O中非直径的两条弦,且AB=CD=8,AB⊥CD于E,圆O的半径为5,那么OE的长等于( )

B分别求弦心距,为3然后用勾股定理,OE是个等腰直角三角型的斜边