已知在Rt△ABC中,∠ACB=90°,点D

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 01:21:54
已知在Rt△ABC中,∠ACB=90°,点D
已知如图在Rt△ABC中∠ACB=90°CE⊥AB垂足为D 求证:∠A=∠DCB

∵CD⊥AB∴∠BCD=90°即∠B+∠BCD=90°∵∠ACB=90°∴∠A+∠B=90°∴∠A=∠BCD

已知如图,在Rt△ABC中,∠ACB=90°,CD垂直AB于D,AB=13,BC=5,求CD的长.

AC^2=AB^2-BC^2=13^2-5^2=12^21/CD^2=1/BC^2+1/AC^2=1/25+1/144=169/(25*144)CD=5*12/13=60/13推导:AB^2=BC^2

已知:在RT△ABC中,∠ACB=90°,D为AB中点,若tan∠BCD=1/3,求∠A的三角函数

∵在RT△ABC中,D为AB中点∴CD=BD=AD∴∠BCD=∠B∴tan∠BCD=tan∠B=1/3即AC/BC=1/3∴tan∠A=BC/AC=3cot∠A=1/3BC=3AC∴AB²=

已知如图在RT△ABC中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角平分线交于E点,求∠AEB

分析:首先求得AE也是∠A的外角的平分线,根据平角的定义和角平分线的定义求得∠EAB,∠EBA的度数,最后根据三角形的内角和定理即可求得∠AEB.∵E是∠C的平分线与∠B的平分线的交点,∴E点到CB的

如图,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上

证明:∵AC=BC,∠ACE=∠BCD=90°,且AE=BD∴Rt△ACE≌Rt△BCD∴∠BDC=∠E∴∠E+∠CDF=∠BDC+∠CDF=180°又∠ACE=90°且四边形CDFE内角和为360°

如图 在rt △abc中 ∠acb=90°,cd垂直ab于d,已知ad=4,bd=1求cd的长

CD=2三角形ADC相似于三角形CDB所以AD/CD=CD/BDCD^2=AD*BD=4所以CD=2

如图,已知在RT△ABC中,∠ACB=90°,CD垂直AB于D,DE垂直AC于E,求证:BC²/AC²

证明:∵∠ACB=90°,CD垂直AB于D∴∠ADC=90,∵∠DAC=∠CAB∴△DAC∽△CAB,则BC:AC=DC:DA∵在RT△ADC中,DE⊥AC∴DC²:DA²=CE:

已知:如图,在Rt△ABC中,∠ACB=90°,D,E分别是边BC,AC上任意的点,连接AD,BE,DE

AD²+BE²=AC²+CD²+BC²+CE²=AB²+DE²再问:能更详细些吗??谢谢!再答:△ACD△BCE都是直角

已知:如图,在Rt△ABC中,∠ACB=90°,CD是中线,CE是高,且AC²=3BC².求证:CD

AC²+BC²=4BC²因为∠ABC=90°所以AB²=(2BC)²AB=2BC所以∠A=30°∠B=60°因为CD是中线所以CD=1/2AB=AD所

已知Rt△ABC中,∠ACB=90°,AC=2,BC=4,点D在BC边上,且∠CAD=∠B.

(1)∵∠ACB=∠DCA=90°,∠CAD=∠B,∴△ACB∽△DCA,∴ACDC=CBCA,∵AC=2,CB=4,∴DC=1,在Rt△ACD中,DC2+AC2=AD2,∴AD=5,答案为:AD的长

已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,求证:∠A=∠DCB

简单,利用直角三角形两锐角互余就可以了,在Rt△ABC中,有∠A+∠B=90在Rt△CDB中,有∠DCB+∠B=90所以有∠A=∠DCB(等量代换)

已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,求∠A=∠DCB

三角形内角和=180°∠A+∠B+∠ACB=180°∠DCB+∠B+∠CDB=180°∠ACB=∠CDB=90°所以∠A=∠DCB再问:在详细些~再答:由于三角形内角和=180°所以三角形ACB中∠A

已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,

设AD=X、CD=Y、BC=Z在Rt△ABC中,∠ACB=90°,CD⊥AB所以三角形ACD相似三角形CBD所以AD/CD=CD/BD所以CD平方=AD×BD即Y平方=9X(1)在三角形ACD和三角形

已知如图在RT△ABC中,∠ACB=90°,CA=CB

证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠

如图,已知:在Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D.

证明:在Rt△ABC中,∠ACB=90°,∠B=30°,∴AC=12AB,∵CD⊥AB,∴∠CDB=90°,在Rt△BCD中,∠B=30°,∴∠DCB=60°,∴∠ACD=∠ACB-∠DCB=90°-

如图,已知:在Rt△ABC中,∠ACB=90°,M是AB边的中点,CH⊥AB于H,CD平分∠ACB.

Rt△ABC中,∠ACB=90°,M是AB边的中点所以AM=CM=BM∠CAB=∠ACM∠CAB=90-∠ABC∠BCH=90-∠ABC所以∠CAB=∠BCH所以∠BCH=∠ACM有CD平分,∠ACB

已知RT△ABC中,∠ACB=90°,∠MCN=45°

本题存在问题,需补充条件:AC=BC.(即三角形ABC为等腰直角形三角形)(1)证明:作∠BCD=∠ACM,并且CD=CM,则:∠BCD+∠BCM=∠ACM+∠BCM=90°.又AC=CB,则:⊿BC

如图,在Rt△ABC中,∠ACB=90°,已知CD⊥AB,BC=1

(1)∵CD⊥AB,∴∠BDC=90°,∵∠DCB=30°,∴∠B=60°,在Rt△ACB中,∠ACB=90°,∴tan60°=ACBC=3,又BC=1,则AC=3;(2)在Rt△BDC中,tan∠B

在RT△ABC中,∠ACB=90°,AC

因为角ACB=90度所以sinB=BC/ABS三角形ABC的面积=1/2AC*BC=1/2*BC*AB*sinB因为AC*BC=1/4AB^2所以1/4AB^2=BC*sinBsin*B*(BC/AB