已知在平行四边形中,角BCD=150°,CD等于2根号三
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:22:08
答:四边形AFCE是平行四边形.证明:∵已知四边形ABCD是平行四边形∴AD∥BC,∠DAB=∠BCD∵AE、CF分别是∠DAB、∠BCD的角平分线∴∠EAD=½∠DAB,∠ECF=
(1)∵AB∥CD(平行四边形)∴∠ABC+∠DCB=180°又BE,CF分别平分∠ABC和∠BCD∴∠EBC+∠ECB=90°∴∠CEB=90°∴三角形EBC是直角三角形,根据勾股定理,得BC=13
AB//CD,AE、CF平分角DAB、角BCD角DEA=角EAB=角DAB/2=角BCD/2=角DCF所以AE//CF,而AF//CE所以四边形AFCE是平行四边形
证:∵在平行四边形ABCD中,∴∠BAD=∠BCD,∠B=∠D,AD=BC,AB=DC,AB∥DC∵AE、CF分别是角DAB、角BCD的平分线,∴∠DAE=∠BCF∵在△ADE和△CBF中,∠D=∠B
恩证明:在平行四边形ABCD中,AB∥BCAC=DC∴∠AEB=∠CBE∠DFC=∠BCF∵BE平分∠ABCCF平分∠BCD∴∠ABE=∠CBE∠DCF=∠BCF∴∠AEB=∠ABE∠DFC=∠DCF
∵AE平分∠BAD,BF平分∠ABC,∠BAD+∠ABC=180°(AD∥BC)∴∠BAE+∠ABF=90°∴AE⊥BF同理可证BF⊥CF,CF⊥DE,DE⊥AE∴四边形EHFG为矩形
证明:∵四边形ABCD是平行四边形,∴CE∥AF,且∠DAB=∠DCB,(平行四边形的对角相等)∵AE、CF分别平分∠DAB、∠BCD,∴∠EAF=∠ECF,又∠ECF=∠CFB,(两直线平行,内错角
根据题意画图.长度是二分之根号六
∵四边形ABCD是平行四边形∴AB平行且=CD,∠BAD=∠BCD∴∠ABD=∠CDB∵AECF分别平分∠BAD和∠BCD∴∠BAE=二分之一∠BAD∠DCF=二分之一∠BCD∴∠BAE=∠DCF∴三
(1)∵BE和CE分别平分∠ABC和∠BCD,∵AB∥CD,∴∠ABC+∠DCB=180°,∴12(∠ABC+∠DCB)=90°,BE和CE分别是∠ABC和∠BCD平分线,∴∠EBC+∠ECB=90°
证法1:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,AB//CD ∴∠BAE=∠DEA∵AE平分∠DAB∴∠BAE=∠DAE∴∠DAE=∠DEA∴AD=DE同理:BF=BC∴DE=
因为平行四边形ABCD所以角BAD=角BCD角ADC=角ABC,又AE、CF分别平分角BAD、角BCD则角DAE=角ECB,平行四边形对边相等.则有:AD=BC,所以:△DAE≌△BCF(ASA)即C
在平行四边形ABCD中,AF//CE角AFC=角CEA所以四边形AFCE是平行四边形所以AC和EF互相平分(平行四边形两条对角线互相平分)
证法一:证明:∵四边形ABCD是平行四边形∴∠BAD=∠BCD,AD∥BC,∠B=∠D又∵AE,AC分别平分∠DAB,∠BCD∴∠EAF=∠FCE.∠BAE=∠DCF∵∠BAE=∠DCF,∠B=∠D∴
【是AE,CF分别是∠DAB,∠BCD的平分线】证明:∵四边形ABCD是平行四边形∴AD//BC,∠BAD=∠BCD(平行四边形对边平行,对角相等)∵AE,CF分别是∠DAB,∠BCD的平分线∴∠1=
延长BE,CD交于K点则由角等关系知CB=CK又有CE平分角BCDBE=EKCD=AB=DK故CE与BE垂直CB=CK所以CB=13=CKCD=DK=CK/2=13/2周长为39面积为直角三角形CEB
因abcd是平行四边形.所以dae=beadfc=bcf.因CF分别是角BAD,角BCD的平分线.所以dae=bea=dfc=bcf.所以ae与cf平行.
证明:∵四边形ABCD是平行四边形,∴CE∥AF,且∠DAB=∠DCB,(平行四边形的对角相等)∵AE、CF分别平分∠DAB、∠BCD,∴∠EAF=∠ECF,又∠ECF=∠CFB,(两直线平行,内错角
平行四边形ABCD所以角BAD=角BCD角ADC=角ABC,又AE、CF分别平分角BAD、角BCD则角DAE=角ECB,平行四边形对边相等.则有:AD=BC,所以:△DAE≌△BCF(ASA)即CF=
∵AB‖CD,∴〈ABC+〈DCB=180度,∴(〈ABC+〈DCB)/2=90度,BE和CE分别是〈ABC和〈BCD平分线,∴〈EBC+〈ECB=90度,三角形EBC是直角三角形,根据勾股定理,BC