已知在平面直角坐标系xoy中 抛物线y ax

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:14:02
已知在平面直角坐标系xoy中 抛物线y ax
在平面直角坐标系XOY中,点p(x,y)为动点,已知点A(根号2,0)

(1)x^2/2+y^2=1(x≠±根号2,y≠0)(2)设l的方程为:x=ty+1与x^2/2+y^2=1联立消去x得:(ty+1)^2+2y^2-2=0即(t^2+2)y^2+2ty-1=0设M(

已知在平面直角坐标系中

解题思路:本题考查了圆周角与圆心角,圆周角与圆外角,圆内角之间的关系;勾股定理,三角函数值等知识,难度较大,特别是第3小题,要利用圆周角与圆外角及圆内角之间的关系,才能得出结论。解题过程:第(2)题的

如图,在平面直角坐标系xoy中

1.(-2,2)2.-1,0.53.1.5,-0.25

在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的

点(x,y)是曲线x²+y²=1上的点,(x',y')是C2上一点,则:x'=√3xy'=2y得:x=(1/√3)x'y=(1/2)y'因(x,y)在曲线x²+y

已知:在平面直角坐标系中

没时间详细解答,给你个思路:1、除开无用条件,原题即是求一点P,P在Y=1/4*X^2上,且P到M(-3,3)的距离加上P到B(0,1)的距离最小2、假设P(x,y),PM=根号[(y-3)^2+(x

已知:如图,在平面直角坐标系xoy中直角三角形OCD的一边OC在

图呢,把图弄上来过A作AE⊥x轴于E,AF⊥CD于F,则AECF是矩形AE∥DC,A是OD的中点得E为OC的中点同理F为DC的中点有OE=1/2OCAE=CF=1/2DCA点坐标(3/2,2)反比例函

已知 如图 在平面直角坐标系xoy中,a(-2,0),b(0,4),点c在第四象限

27.如图11,已知正比例函数和反比例函数的图像都经过点M(-2,),且P(,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比

在平面直角坐标系xOy中,O为坐标原点

(1)cosa=5/6sina=根号11//6向量OP=(5/6,根号11//6)向量PA=(11/30,-根号11/6)向量PA*向量PO=(5/6)*(11/30)+(根号11/6)*(-根号11

在平面直角坐标系xOy中,双曲线x

MFd=e=2,d为点M到右准线x=1的距离,则d=2,∴MF=4.故答案为4

如图,在平面直角坐标系xoy中..救急!

1:连接CM,A、M点坐标知道,AM=2,CM=AM=2,O(0,0)坐标原点,推出:OM=1,利用勾股定理:CO平方+OM平方=CM平方推出:OC=根号下3,则C(0,根号下3)我不能打符号,自己打

已知:如图,在平面直角坐标系xOy中,Rt△OCD的一边OC在x轴上

(1)设反比例函数为:y=k/x,依题意可知,点A的坐标为(1.5,2)将A(1.5,2)带入公式,即2=k/1.5,解得k=3所以,反比例函数为:y=3/x(2)设直线AB解析式为:y=ax+b由“

在平面直角坐标系xOy中,已知反比例函数 满足:当x

7/3再问:请问仁兄,有没有过程,在下初三。再答:我也是的啦,不是填空题嘛过程:设点P坐标(x,y)则x^2+y^2=7xy=2kx+y=根号3k(因为y=-x+根号)所以(x+y)^2-2xy=7(

在平面直角坐标系xoy中,

1、向量a的模可看作点Q到点(0,√3)的距离,向量b的模可以看作点Q到点(0,-√3)的距离;所以IaI+IbI=4可看作点Q到点(0,√3)和点(0,-√3)的距离之和为4,所以点Q的轨迹为以点点

"在直角坐标系xOy中"

直角坐标系xOy是指由x轴,y轴以及以它们的交点O为原点建立的坐标系.一般情况下,Ox是横轴,Oy是纵轴.

已知,在平面直角坐标系xOy中,A(-3,0),B(0.-5).

(1)直线y=-x+m斜率为-1,设其与AC,OB的交点分别为D,E;ADEO,BEDC均为直角梯形,面积相等,则AD=BEy=-x+m,取x=-3,D(-3,3+m)取x=0,E(0,m)AD=0-

如图所示 在平面直角坐标系xoy中,

(1)C点(√3,-1);D点(√3/2,-3/2)(2)第二个问题估计你说的有点问题,我想你应该是经过O、C、D三点抛物线的解析式吧如果是O、C、D:y=-4/3x²-5√3/3x

已知:如图,在平面直角坐标系xOy中,

没图,我来试试.(1)A为(0,0),△ABC边长为2*sqr(3),BC∥x轴,则C应为(sqr(3),-3)(也可是(-sqr(3),-3),因为你没给图,我不知道B和C谁在左边,谁在右边,我姑且

在平面直角坐标系xoy中,设二次函数

⑴图案与y轴有个交点,因1>0,开口向上所以,当x=0时,y=b0,