已知复数z1 z2不等于0_a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 09:36:20
z1z2=(1+2i)*(cosα+isinα)=(cosα-2sinα)+(sinα+2cosα)i为纯虚数,所以,cosα-2sinα=0,tanα=sinα/cosα=1/2tan2α=(2ta
设z1=a+bi,z2=c+dia^2+b^2=1c^2+d^2=1因为z1+z2=-i所以a+bi+c+di=-i(a+c)+(b+d)i=-i所以a+c=0(实数部分),b+d=-1(虚数部分)得
设z2=a+biz1*z2=(-2+i)*(a+bi)=-5+5i∴-2a-2bi+ai-b=-5+5i所以a-2b=5,2a+b=5解得a=3,b=-1∴z2=3-i所以z1+z2=1
a=1(a+i)(1-ai)=a-ai2+i-a2i=2a+(1-a2)i>0即2a>0且1-a2=0故a=1式子里的2是平方
再答:给好评吧拜托再答:🙏
证明:用大写字母Z表示z的共轭复数∵|z1+z2|=|z1-z2|∴(z1+z2)(Z1+Z2)=(z1-z2)(Z1-Z2)∴z1Z2+Z1z2=-z1Z2-z2Z1∴z1Z2+Z1z2=0∴z1/
再问:还在吗请问再问:~≧▽≦)/~再问:为什么Z2要这么设再问:再问:这样可以吗?再答:因为它们加起来是2i呀再答:你这样设加起来等于零了再问:嗯嗯,只要不等于零的假设都可以?再答:再问:再问:什么
∵复数z2的虚部是2∴可设z2=a+2i又∵(z1-2)i=1+i∴z1=(1+i)/i+2=-(1+i)i+2=-i-i²+2=3-i又∵z1z2=(3-i)(a+2i)=3a+6i-ai
可以利用复数与向量的关系来解决.|z1+z2|所表示的复数是以OZ1、OZ2为边的平行四边形的一条对角线,而|z1-z2|则恰好表示另一条对角线,因这个平行四边形的对角线相等,则这个平行四边形是矩形,
令t=z₁/z₂,则原方程化为t²-√3t+1=0,解得t=(√3±i)/2,(配方或用求根公式,其中i为虚数单位)∴|t|=1,即|z₁|=|zS
z1z2=2+ai1−2i=(2+ai)(1+2i)(1−2i)(1+2i)=2−2a+(a+4)i5=2−2a5+a+45i,因为复数是纯虚数,所以a=1,满足题意.故选D.
z1=a+bi,z2=c+dia,b,c,d是实数z1+z2=a+c+(b+d)i是实数所以b+d=0d=-bz1=a+biz2=c-biz1z2=(ac+b²)+(bc-ab)i是实数所以
z1*z2=1+2i+ai-2a=(1-2a)+(2+a)i为纯虚数.所以,a=1/2希望对楼主有所帮助,有任何不懂请追问!
∵z1z2=3−bi1−2i=(3−bi)(1+2i)(1−2i)(1+2i)=3+2b+(6−b)i5是实数,则6-b=0,∴实数b的值为6,故选A.
(z2)'表示下z2的共轭复数z1z2+2i(z1-z2)+1=0即z1=(2iz2-1)/(z2+2i)两边取模得|z1|=|2iz2-1|/|z2+2i|=√3即(2iz2-1)*(2iz2-1)
刚学的2-2吗?因为z=a+bi所以[(a+bi)+(a-bi))]/[(a+bi)-(a-bi)]=2a/2bi=-ai/b因为a,b∈R,且均不为0,所以原式为纯虚数
不对复数Z=a+bi若a不等于0,b=0则共轭Z就是实数拉那么共轭Z分之Z是实数-1
z1z2+2i(z1-z2)+4=0即(z1-2i)(z2+2i)=0,因为z1的模不等于2,所以z1-2i不等于0,所以z2+2i=0,z2-4i=-6i,所以(z2-4i)的模是6.
(z1+z2)=1/2+根3/2i两边平方z1方+z2方+2z1z2=根3/2i-1/2z1方=|z1|方=1z2方=1z1z2=...自己会算了吧
z=z1z2=1+i1i=(1+i)•i=-1+i.对应点的坐标为(-1,1),位于第二象限.故选B.