已知如图,PA=PB,∠1 ∠2=90°.求证:OP平分角AOB.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 02:06:24
弦相等,则弦心距相等,∴PO平分∠APB(到角两边相等的点在这个角的平分线上).
将△PBC旋转60°,使BC与AC重合,旋转后的图形为△ACD,连接DP,则∠PDC=60°,∠PDA=90°且PD=2,DA=1,所以AP=√5
135度.将三角形ABP顺时针旋转90度,由于ABCD是正方形,所以AB与BC重合,记此时旋转后的P点是Q.三角形ABP和三角形CBQ全等.所以BQ=BP=2,AP=CQ=2根号2,而且角ABP=角C
把三角形ABP绕点B顺时针旋转60度使AB与BC重合得到三角形BDC,连接PD△ABP≌△CBD∴BD=BPDC=AP∠PBD=60度∴△BPD是等边三角形∴∠BPD=60度设第一份为X则在△QCD中
(1)证明:∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,且BC⊥AB,∴BC⊥平面PAB,∵PA⊂平面PAB,∴PA⊥BC;又∵PA⊥PB,PB∩BC=B∴PA⊥平面PBC.…..4(2)
APC绕点C逆时针旋转90°,得△BCO,连结OP由于BC=AC,所以BC与AC重合,亦即点A落到点B处根据辅助线的作法可知△ACP≌△BCO∴∠BCO=∠ACP,∠BOC=∠APC,BO=PA=1,
解题思路:证明三角形全等可求。∵PC=PB,∴∠PBC=∠PCB,又∠ABC=∠BCD=90°,∴∠ABP=∠DCP又∵AB=CD,∴△ABP≌△DCP(SAS)∴PA=PD。解题过程:
以BP为边作等边三角形BPD,连接AD,则BD=BP=DP=3,∠DBP=∠BDP=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∵∠ABD+∠ABP=∠CBP+∠ABP=60°,∴
将△ABD绕B顺时针旋转到AB和BC重合,那么得:△BCE≌△ABD,连接PE∴PB=BE,CE=PA,∠APB=∠BEC∠CBE=∠ABP∵∠ABP+∠CBP=90°∴∠CBE+∠CBP=90°即∠
⑴弦相等,则弦心距相等,∴PO平分∠APB(到角两边相等的点在这个角的平分线上).⑵道理同上.⑶设弦PA交圆于A、C,PB交圆于B、D,∵PA=PB,∴∠PAB=∠PBA,又∠PAB=∠PDC,∠PB
把△ACP绕C旋转90°得到△BCM连接PM和BM用勾股定理的逆定理就可以
这是作业本上的题目把1):作oc垂直AP于C,作OD垂直PB于D.∵PA=PB∴OC=OD(在同圆或等圆中,相等的弦的圆心距相等)∴∠APO=∠BPO(到角两边距离相等的点在角平分线上)(2):作OE
求什么再问:求证:∠A=40度再答:再问:这个是角阿尔法吧?再答:不知道、看不清
向量PA·PB数量积cot²θ*cos2θ=cot²θ-2cos²θθ的定义域为(0,90°),sinθ为单调增,cosθ为单调减设x=sinθ,x∈(0,1),cos&
如图,⊿EBP=∠EBA+∠ABP=∠CBP+∠ABP=∠ABC=90ºBE=BP ⊿EBP等腰直角.∠EPB=45º ∠APE=135
证明:过点P作PE⊥OA交OA的延长线于E,PF⊥OB于F∵PE⊥OA,PF⊥OB∴∠AEP=∠BFP=90∵∠2+∠FBP=180,∠1+∠2=180∴∠FBP=∠1∵PA=PB∴△PAE≌△PBF
声明一下.我是来找答案的.没想到是u提的--悔死我了、把答案给你吧.证明:1【在DA上截取DE=BD,连接BE因为△ABC是等边三角形所以∠BCA=60°因为∠BDA=∠BCA所以∠BDA=60°因为
不管o是不是角平分线po上的一点,都是108度啦