已知如图,P为三角形ABC两外角∠DBC和∠ECB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 01:51:01
因为角ABE+角A=90度角ACF+角A=90度所以角ABE=角ACF角A=角A所以三角形ABE相似于三角形ACF所以AB比AC=AE比AF角A公用所以三角形AEF相似于ABC
因为PA,PB,PC两两垂直,PA=PB=PC=a所以三角形ABC是等边三角形,并且P在平面内的射影是三角形的重心设距离为X则三角形的边长为根号下2倍的aAH^2+PH^2=PA^2X^2+2/3a^
中线交点是中线的三等分点BPC里面等底同高BPC面积是10,然后三等分点等底同高BPA是俩BPE是10,同理APC是10加到一起是30.引用怎样证明三角形的重心(中线的交点)是中线的一个三等分点
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
∵PA⊥PB,PC⊥PB∴PB⊥面PAC∴PB⊥AC又PO⊥a,AC属于a∴PO⊥AC∴AC⊥面POB∴AC⊥OB同理BC⊥OAAB⊥OC∴O为△ABC的垂心
将三角形APC以C点为中心顺时针旋转90度,使A与B点重合,设P点转到了Q点,则三角形BQP与三角形APC全等,QC=PC=2,BQ=AP=3,∠BCQ=∠ACP,所以,∠PCQ=∠PCB+∠BCQ=
选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,
在AP上取PD=PC,连结CD,〈DPC=60度,PD=PC,三角形PCD是等边三角形,CD=PC,AC=BC,〈ACD=〈ACB-〈DCB,〈BCP=〈DCP-〈DCB,〈ACB=〈DCP=60度,
延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC
(1)连接AP,过BC中点D作AP平行线交AC于Q点,连接PQ即为所求.(2)连接BD,过C点作BD平行线交AD于Q点,取AQ中点为O,连接BO即为所求.
用面积法证明.(以下S△代表三角形的面积)S△ABC=S△APC+S△APB+S△BPC,其中S△APC=AC*PE/2,S△APB=AB*PF/2,S△BPC=BC*PD/2,由于是等边三角形,故有
证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.
BP=2PQ证明:∵等边△ABC∴AB=AC,∠BAC=∠ACB=∠ABC=60∵AE=CD∴△ABE≌△CAD(SAS)∴∠ABE=∠CAD∴∠BPD=∠ABE+∠BAD=∠CAD+∠BAD=∠BA
∵三角形ABC为等边三角形∴AB=BC=CA,∠A=∠B=∠C又,AD=BE=CF∴△ABE≌△BCF≌△CAE∠BAE=∠CBF=∠ACD,∠AEB=∠BFC=∠CDA∴∠AMD=∠BNE=∠AMD
解题思路:根据题意,由三角形相似的知识可求,根据对应线段成比例解题过程:
角APC=1/2(180度-角PCA)=30度+1/2*a由(1)知角PAC=角APC=30度+1/2*a则角BAP=a-(30度+1/2*a)=1/2*a-30度,而角PCB=1/2(180度-a)
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
是144,挺简单的.利用相似三角形边长比的平方=面积比这个定律,楼主先自行思考下,晚上给你过程!过程:△PIE∽△DMP,得出PE/DP=根号(9/4)=3/2,继续得到,PE/DE=3/5.由△PI
做CE⊥AP于E,CF⊥PB于F∵CP平分∠APB∴CE=CF∵AC=BC∴RT△ACE≌RT△BCF(HL)∴∠BCF=∠ACE∵∠ACF+∠BCF=90°∴∠ACE+∠ACF=∠ECF=90°∴∠
证明:∵AD⊥BC,∴∠AFB=∠AFC=90°,又∵AB=AC,AF=AF,∴Rt△ABF≌Rt△ACF,∴∠BAP=∠CAP,又∵AB=AC,AP=AP,∴△ABP≌△ACP,∴PB=PC.