已知如图,以锐角三角形ABC的边AB,AC为直角边,作等腰直角三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:05:00
证明:(1)以A点为顶点,做一条垂直于BC的高AD;∵AD=AC*sinC=bsinC∴S(△ABC)=1/2*BC*AD=1/2*absinC(2)三角形ABC的面积S=1/2absinC=1/2*
∵BE⊥AC,CF⊥AB∴∠AEB=∠AFC=90°∵∠A=∠A∴△ABE∽△ACF∴AE/AF=AB/AC∴AE/AB=AF/AC∵∠A=∠A∴△AEF∽△ABC
GF平行且等于BC的1/2,所以GF//DEEF=1/2*AB=DG(三角形ADB为直角三角形,从直角到斜边中点的连线等于斜边的一半)所以四边形DEFG是等腰梯形.希望对您有所帮助如有问题,可以追问.
由于有角平分线,求最值可利用对称啊!设N关于AD的对称点为R,由于为锐角三角形,则R必在AC上.MN=MR,并作AC边上的高BE,E在线段AC上.BM+MN=BM+MR>=BE由于面积为15,则AC边
∵∠A+∠B+∠C=180°,∠A=60°∴∠B+∠C=120°∵∠B=1/2弧CED,∠C=1/2弧BDE∴弧CED+弧BDE=2(∠B+∠C)=240°又∵弧CED+弧BDE=(弧CE+弧DE)+
连接BN,CM∵等边△ACN,等边△ABM∴AB=AM,AC=AN∠CAN=∠BAM=60°∴∠CAN+∠BAC=∠BAM+∠BAC即∠BAN=∠CAM∴△BAN≌△MAC∴BN=CM又∵BN=2EF
证明:∵BDCE是三角形ABC的两条高∴∠BDC=∠BEC=90又∵∠ECB+∠EBC=90∠DBC+BCD=90且OB=OC又∵OB=OC∴∠DBC=∠ECB(注:OB=OC说明三角形OBC是等腰三
1、在△PBC平面上作PM⊥BC,交BC于M,在△PAM平面上作AG⊥PM,交PM于G,AG就是平面PBC的垂线.证明:∵PA⊥平面ABC,∴PA⊥BC,而BC⊥PM,∴BC⊥平面PAM,而AG在PA
是求,求证,∠EAF+∠EDF=180°?∵AD为直径.∴∠AED=∠AFD=90°.(直径所对的圆周角为直角)∴∠AED+∠AFD=180°,∠EAF+∠EDF=360°-(∠AED+∠AFD)=1
稍等再答:证明:∵正△ABM,正△CAN∴AB=AM,AC=AN,∠BAM=∠CAN=60∵∠BAN=∠BAC+∠CAN,∠MAC=∠BAC+∠BAM∴∠BAN=∠MAC∴△ABN≌△AMC(SAS)
简(见原图)∵四边形BFMG是菱形∴可设BF=FM=MG=BG=x过F作FH⊥BC则FH∥AD且FH=ED=51根据平行线截割线定理有:FH/AD=FB/AB(或写为:FH:AD=FB:AB)∴51:
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
证明:做AB,AC,的中点记为G,H.连接DG,GE,EH,HF.则DG,GE,EH,HF均为三角形的中线由三角形中线定理的DG平行且等于1/2AM=1/2AB=EHDG=EH同理,GE=FH在三角形
ABC是锐角三角形.分别以AB,AC为边向外侧作等边三角形ABM和等边三角形CAN.D、E、F分别是MB、BC、CN的中点,连结DE、EF.求证DE=FE证明:连结CM、BN∵△ABM、△ACN为等边
那么a+b=2√3,ab=2,解得a=√3-1,b=√3+1sin(A+B)=sinC=√3/2,解得C=60度c^2=a^2+b^2-2ab*cosC=8-4/2=6,解得c=√6Sabc=ab*s
同学抄题也要认真一点啊
在!你可以连接a,o因为cd垂直于ab,be垂直于ac所以角bdc=角ceb=90度,又因为角bod和角coe是对角所以相等,ob又等于oc可证出三角形bod全等于三角形coe(角角边定理),所以od
可以证明CD⊥BG,因为CD∥MH,BG∥NH.设CD交BG于K,证明∠BKC=90°,而∠BKC=∠ABG+∠ACD+∠BAC.因为△DAC≌△BAG(第一个小题的证明会得到这个结论),所以∠ACD
∵AD是直径,∴∠AED=∠AFD=90°,根据四边形AEDF内角和为360°,得∠EAF+∠EDF=180°.⑵β=1/2α.证明:∵BD=PD,AD⊥BP,∴AB=AP,∴∠DAB=∠DAP,∵∠