已知如图1等边三角形abc和等边三角形ade有一公共顶点a连接bedc交于点g
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:05:37
在△ACD和△ABE中AC=AB∠CAD=∠BAEAD=AE∴△ACD≌△ABE(SAS)∴EB=DC
证明:,△ABC和△ADE都是等边三角形所以角CAB=角BAE=60度,AC=AB,AD=AE所以三角形CAD全等于三角形BAE(边角边)所以EB=DC
证明:三角形ABC和三角形ADE是等边三角形,则AD=AE,AB=AC,角CAD=角BAE,则三角形CAD全等于三角形BAE,所以,EB=DC
△ABC和△BDE都是等边三角形∴∠ABD=∠CBE=60AB=BCBD=BE(边角边相等)∴△ABD全等于△CBE∴AD=CE
1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC
△ACD和△BCE中AC=BC,CD=CE,角ACD=角BCE=60°+角ACE所以△ACD≌△BCE,从而AD=BE
没有图,我只好按照自己画的位置来证明了证明:(1)∠ACE=∠DCE+∠ACD,∠BCD=∠BCA+∠ACD∵△ABC和△CDE都是等边三角形,∴∠BCA=∠DCE=60°∴∠ACE=∠BCD在△AC
∠EOB=120°证明△BCD≌△ACE(SAS)得∠CBD=∠CAE∴∠EOB=∠BAO+∠ABO=∠BAC+∠ABC=120°(2)先证明△ACD≌△CBF(ASA)得CD=BF,∵CD=BD,∴
证明:∵△ABC和△DEC是等边三角形∴∠ACB=∠BCE=60°AB=BC,CD=CE∴△ACD≌△BCE∴AD=BE
证明:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠ACB=∠ECD=60°.∴∠ACB+∠ACE=∠ECD+∠ACE.即得∠BCE=∠ACD.在△BCE和△ACD中,BC=AC∠B
由三角形全等得到∠DAC=∠FBC∠AFB=180-(∠ABF+∠FAB)=180-(∠ABC+∠FBC+∠FAB)=180-(60+∠DAC+∠FAB)=180-(60+∠CAB)=180-60-6
证明:∵△ABC和△BDE都是等边三角形∴AB=BC,BD=BE,∠DBE=∠ABC=60°∴△CDB≌△AEB(SAS)∴AE=CD
∵ΔABC和ΔBDE都是等边三角形∴AB=BC,BE=BD∠ABE=∠DBE=60°∴⊿ABE≌⊿CBD﹙SAS﹚∴AE=CD
证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CD=CE,∠ABC=∠DCE=60°∴∠BCD=∠ACE∴△BCD≌△ACE(SAS)∴BD=CE
垂直因为都是等边三角形,所以AD平行且等于BCAB平行且等于DC所以ABCD为菱形因为ACBD为对角线所以AC垂直BD
再答:再问:谢谢!那BE和CF的关系怎么证?
救命当然要快点了.慢了就没命了呀.楼主正被狗追咬,跑得四脚不着地?怎么得罪它了?还是因为长得太骨感的缘故?:)
解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S