已知如图ab为圆o的直径点p是○o外一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:00:52
(1)连接OC.∵PC为⊙O的切线,∴PC⊥OC.∴∠PCO=90度.∵∠ACP=120°∴∠ACO=30°∵OC=OA,∴∠A=∠ACO=30度.∴∠BOC=60°∵OC=4∴PC=4•tan60°
尺规作图:以A为圆心作大圆与CD交于两点,再以相交两点为圆心,大于两点距离为半径做两圆,相交另外两点,连接那两点交CD与P,则再按照第二步找出圆心O,搞定.证明:连接PO,PE交于Q三角形OPQ与三角
逆推结果,角E是PEC吧?这题实际是让你证明PCO=90已知PCD=EA+DBA+E=90又有DCO=DCA+ACO=DCA+A=A+DBA所以E+DCO=90即PCD+DCO=PCO=90所以PC为
(1)证明:易知AP⊥BP,又由AA1⊥平面PAB,得AA1⊥BP,(2分)从而BP⊥平面PAA1,故BP⊥A1P;(5分)(2)延长PO交圆O于点Q,连接BQ,A1Q,则BQ∥AP,得∠A1BQ或它
(1)连接OC,因为角DB0=角COP,又因为角COP=2倍角CBO,所以角DBC=角CBO.可以证明三角形DBC与三角形CBA相似,可以得到DB:BC=CB:BA,=>BC^2=BD*BA(2)连接
证明:△OEP全等于△OFPPE=PF由垂径定理得MP=NP∴ME=NF由垂径定理得弧AM=弧AN△OEP全等于△OFP∴∠COA=∠DOA∴弧AC=弧AD∴弧MC=弧ND
CP*CP=AP*PB(三角形APC与三角形BPC相似得出)AP:PB=1:3可以得出PB=根号3所以OB=2PB=2倍根号3
∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE
第一问:1)因为DC是圆O的切线,所以∠DCB=∠CAB2)因为AB是直径,所以∠BDC=∠BCA=90°3)由1)、2)可知△BCD相似于△BAC,于是BC/BA=BD/BC,即BC^2=BD*BA
先自己画个图,标准点,再看题目
(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x
(1)证明:∵AB=AC,点D是边BC的中点,∴AD⊥BD.又∵BD是圆O直径,∴AD是圆O的切线.(2)证明:连接PD、PO,∴PD∥AC,已知△ABC中,AB=AC,∴BD=DC,∴PB=PD,∴
∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直
连接OC,∵AB是圆O的直径,P在AB的延长线上,PD切圆O于点C.圆O半径为3,OP=2,∴PB=2-3,PA=2+3,∴PC2=PB?PA=(2?3)(2+3)=1,∴PC=1.在Rt△OCP中,
(1)连接BC∵AB是直径∴∠ACB=90º∵AB=2、AC=√3∴BC=1∴∠A=30º(2)连接OC∵CD⊥AB、AB是直径∴∠BOC=2∠A=60º∴B⌒C=60/
等等再答:过点O作OE⊥CD于E∵PA=1,PB=5∴AB=PA+PB=6∴AO=AB/2=3∴OP=AO-PA=3-1=2∵OE⊥CD∴CD=2DE,∠OEP=∠OED=90∵∠DPB=∠APC=4
证明:连接AP∵AB是⊙O的直径∴∠APB=90°∵AB=AC∴BP=CP(等腰三角形三线合一)∵AO=BO∴OP是△ABC的中位线∴OP//AC∵PD是⊙O的切线∴PD⊥OP∴PD⊥AC
∠CMP的大小不变,∠CMP=45°连接OC,交PM于D∵PC是⊙O的切线∴∠OCP=90°∵PM平分∠APC∴∠MPC=1/2∠APC∴∠CDP=90°-1/2∠APC∵∠CMP=∠CDP-∠ACO
(1)连接OC∵PD切圆O于点D∴OD⊥PD∵C为半圆ABC的中点∴OC⊥AB∵OC=OD∴∠OCE=∠ODE∵∠OCE+∠OEC=90°∠ODE+∠PDE=90°∴∠OEC=∠PDE又∠OEC=∠D