已知如图AB为圆O直径点C,D在圆O上且BC=6厘米AC=8厘米角ABD=45度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:12:41
(1)∵AB为圆O的直径,∴AC⊥CB,∵Rt△ABC中,由3AC=BC,∴tan∠ABC=ACBC=33,∠ABC=30°,∵AB=4,3AD=DB,∴DB=3,BC=23,由余弦定理,得△BCD中
(1)答案不唯一,只要合理均可.例如:①BC=BD;②OF‖BC;③∠BCD=∠A;④△BCE∽△OAF;⑤BC^2=BE·AB;⑥BC^2=CE^2+BE^2;⑦△ABC是直角三角形;⑧△BCD是等
连结AC,CE切圆O于点C=>∠ECB=∠A,AB为圆O的直径=>∠ACB=90=>∠A+∠B=90∠B+DCB=90=>∠A=∠DCB,∴∠ECB=∠DCB =&g
设CD与AB交于E点,O为圆心,连接CB、OC.∠OCB=∠OBC,因为OC⊥CE,所以∠ECB=90°-∠OCB又,CD⊥CE所以∠BCE=90°-∠OCB=∠ECB所以:CB平分∠ECD即证
可以,但似乎太麻烦了.如下证明可否:连结AC、DC,∵AB是直径,∴∠ACB=90°,∴∠ACP=90°,∵D是AP中点,∴DA=DC,∴∠DAC=∠DCA,∵OA=OC,∴∠OAC=∠OCA,∴∠D
1.连接BC,∵CD是切线∴OC垂直DC∴AD平行于OC∴△DAF∽△OCF∴AF/FC=AD/OC连接BE交OC于G∵AB是直径∴∠AEB=90°,∵AB是直径∴BE平行于DC∴OG垂直BE∴OG=
这里同初三滴~刚考完期末1.证明:设DC与AB的交点为F连接BD,由题可知:∠BDA=∠BCA=90°∵∠BCD=∠ACD=45°∴BD=AD,∠DBA=∠DAB=45°由∠DBA=∠ACD=45°∠
连接AD,则AD⊥BC,∵BD=CD,∴AB=AC,∠BAD=∠CAD=1/2∠BAC.°∵∠EBC=20°,∴∠EAD=20°即∠CAD=20°,∴∠BAC=2∠CAD=40°;(2)证明:由(1)
证明:(1)∵PC是直径,∴∠PDC=90°,∴∠BDP+∠ADC=90°,又∠BDP=∠DCP,∴∠ADC=∠ACD,即AC=AD,∴AD也是⊙O的切线.∴BD2=BP•BC,∵BD=2
分析:(1)连接OD,利用同弧所对的圆周角等于所对圆心角的一半,得到∠HOD=2∠A,然后用等量代换得到∠ODE=90°,证明DE是⊙O的切线.(2)利用(1)的结论有∠ODE=90°,又已知∠OBE
1、连接CO,直角三角形POC中,PO=2CO=1,直角边为你斜边的一半,所以角P=30度.2、连接AE,直角三角形ABE中角P=30度,BD=0.5PB=1.5,直角三角形PBD中,角EAB=30度
(1)因为AB是直径,所以角ACB是90度,又因为BC=1/2AB=3(直角边是斜边的一半),所以角BAC=30度sin30度=1/2,sin角BAC的值为1/2(2)因为OE垂直AC,O为AB中点,
连接OC.AB为直径,C为弧AB的中点,则:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.设BD=X,则DE=DF=2+X.DE为圆的切线,则:DE²=BD*AD,(2+X)
1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方
1、连接BC,∠DCA=∠CBA,从而证明三角形DAC相似于三角形CAB,于是∠ADC=∠ACB=直角2、AD:AC=AC:AB,所以ACxAC=80,AC的长度就是把80开方就行了
证明:连接CO.则∠ACO=∠CAO(等腰三角形,两地角相等)∵CD与圆相切,∴CO⊥CD.又∵AD⊥CDAD∥CO∴∠DOC=∠ACO(两直线平行,内错角相等)∠DAC=∠CAO所以:AC平分角DA
(1)连接OC,∵CD切⊙O于点C∴∠OCD=90°(1分)∵∠D=30°∴∠COD=60°(2分)∵OA=OC∴∠A=∠ACO=30°;(4分)(2)∵CF⊥直径AB,CF=43∴CE=23(5分)
由勾股定理得BP=10连接AC,可证三角形ABC与PBA相似,可得BC=18/5,CP=32/5,AC=24/5过C作AP垂线,垂足为E三角形PCE与PBA相似,可得CE=96/25sinADC=CE
1.弧CB=弧CD,CB=CD∠CAE=∠CAF,CF⊥AB于点F,∠CFA=90°,CE⊥AD的延长线于点E,∠CEA=90°,∠ACE=90°-∠CAE,∠ACF=90°-∠CAF∠ACE=∠AC
说的真模糊~还不知道你今年多大...姑且认为你不是在耍人吧.嗯,说正题.连结AC,BC(这个圆里的三角形要记住.因为有很重要的结论:CD的平方等于AD乘BD,那么BD=8,则AB=10)若是大题,忽略