已知如图三角形abc中,中线bd和中线ce
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:20:06
∵ED垂直且平分AB,∴BE=AE.∵BE+CE+BC=15cm∴AE+CE+BC=15cm即AC+BC=15cm∵AC=9cm∴BC=6cm
∵BE∥CF,∴∠GBE=∠DCF,∠E=∠DEC,∵BE=CF,∴ΔDBE≌ΔDCF,∴BD=CD,∴AD中ΔABC的中线.
中线交点是中线的三等分点BPC里面等底同高BPC面积是10,然后三等分点等底同高BPA是俩BPE是10,同理APC是10加到一起是30.引用怎样证明三角形的重心(中线的交点)是中线的一个三等分点
因为BC=2AB,AD是中线所以AB=BD又因为角B=2角C所以AD=DC,即AB=AD所以三角形ABD是等边三角形
⑴可延长AD到F,使DF=AD,在△ABF中,由三边关系即可得出结论;⑵由△ADC≌△FDB,得∠CAD=∠F,在△ABF中,由边的大小关系即可得出角之间的关系;⑶同⑵,由角的关系亦可求解边的大小./
第一个问题:延长CG交AB于H.∵BC⊥AC、DE⊥AC,∴BC∥DE,∴EG/DG=CF/BF,而EG=DG,∴CF=BF,又CF=FG,∴CF=FG=BF,∴点F是△BCG的外接圆圆心,∴BC是△
思路:分别延长AD、A`D`至E与E`使DE=AD,D`E`=A`D`,易证:△ABD≌△ECD△A`B`D`≌△E`C`D`得EC=ABAE=2AD∠BAD=∠EE`C`=A`B`A`E`=2A`D
延长AD到E,使AD=DE,连结BE,则三角形BDE全等于CDA,则BE=AC=3,AE=5,三角形ABE为直角三角形,所以三角形ABC面积等于三角形ABE面积等于3*4/2=6
证明:连接DE∵DE是中线,△ABD为Rt△∴DE=BE=AE∵∠B=∠BDE∵DC=BE∴DE=DC∴∠DCE=∠DEC∵∠BDE=∠DCE+∠DEC∴∠BDE=2∠BCE
延长AM至N,使MN=AM,连结BN,BM=CM,MN=AM,AN,AN=2AM,∴AM
已知BD=DC则△ABD的周长=6+BD+AD△ADC的周长=4+DC+AD∵BD=DC∴△ABD的周长-△ADC的周长=2周长之差为2
因为cd为ab中线,所以ad=bd=cd=1/2ab.又ab=2ac,所以ad=bd=cd=ac,所以三角形acd是等边三角形
∵AD为△ABC的中线,AE是△ABD的中线,∴BD=CD,BE=DE,∴BE=1/2BD,BD=1/2BC;又∵AB=BD,∴BE=1/2AB,AB=1/2BC,∴BE/AB=AB/BC=1/2,∠
因为D是中点,所以AD=BD,由已知得BC=AC+5将以上代入DBC周长=25=BC+CD+DB=(AC+5)+CD+AD=5+AC+CD+AD所以AC+CD+AD=20故ACD周长为20.此题主要用
延长AD到E,使DE=ADABD全等于CEDCE=3AE=4AC=5所以角AEC=90度DE=2CB=2CD=2倍的根号13
∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)
∵BE∥CF∴∠E=∠CFD,∠EBD=∠FCD∵BE=CF∴△BDE≌△CDF(ASA)∴BD=DC∴AD是△ABC的BC边上的中线
三条中线将三角形分成六个面积相等的小三角形.证明:三角形BOD的底是BD,高是O到BC的距离;三角形COD的底是CD,高是O到BC的距离BD=CDBOD=COD同理:AOE=COEAOF=BOF三角形
作EF∥BC交AD于F连DE∵AE=EB∴AF=DF又AD⊥BCEF∥BC即EF⊥AD∴△AEF≌△DEF∴∠AEF=∠BEF∵DE=DC∴∠DEC=∠DCE∵EF∥BC∴∠DCE=∠FECAE=DE
因为AC=4,BC边中线=3假设中线为AD,则DC=5所以三角形ADC为直角三角形,面积为(1/2)*3*4=6三角形ABC的面积为三角形ADC面积的2倍所以三角形ABC的面积为12