已知如图点o为平行四边形的对角线bd的重点经过点o的直线分别交ba的延长线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:45:02
1.已知平行四边形周长为20CM,两邻边之比为3比2,则较长边为6cm2.平行四边形的性质有:对角相等,对边相等,对角线互相平分3.在平行四边形ABCD中,AC、BD相交于点0,AC=20,BD等于3
第一个问题:不一定是菱形.因为所有平行四边形的两组对角分别相等,这是平行四边形的性质.补充问题:是菱形.因为平行四边形的对边互相平行,所有对角线与一组对边所构成的内错角是相等的.如果对角线平分所在的角
1.答:因为CF平行于AD所以角EFC等于角EAD角ECF等于角EDA所以三角形ECF相似于三角形EDA又因为CE等于DC所以CE等于1/2ED所以CF等于1/2AD所以CF等于1/2BC(F为BC中
第一题不知道你说什麽(什麽叫“……连先三等分次”)第二道题是∵b向量=BC向量=AD向量∴a向量-b向量=DB向量又∵c向量+DB向量=OB向量∴原题得证
OH=OD+OC=(OA+OB)+OC=a+b+c
如图四边形ABCD为平行四边形,BC//AD,角OAD=角OCB,角ODA=角OBC,AD=BC,三角形OAD全等于三角形OCB,同理三角形OAB全等于三角形OCD,OD=OB,分别以OB、OD为底边
分别为107度和73度补充:两对角是相等的,所以这两对角度数均为107度.两邻角和应为180度,所以另两角均为180-107=73度.
因为是平行四边形,所以对边平行,根据两直线平行,同旁内角互补可知邻角互补,就是对角是同角的补角,所以两组对角分别相等.
证明:∵四边形ABCD是平行四边形 ∴OA=OC 又∵E、M为OA、OC中点 ∴OE=OM同理:OF=ON ∴四边形EFMN是平行四边形(两条对角线互相平分的四边形是平行四边形)不懂可以继续追
∵BC、CD是切线,∴∠ONC=∠ONC=90°,∵ABCD是正方形,∴∠BCD=90°,∴四边形OMCN是矩形,又OM=ON,∴矩形OMCN是正方形,设圆半径为R,OA=OM=CM=R,∴OC=√2
因为平行四边形的对角相等又因为一组对角的和=200度所以这组对角分别=100度另一组对角分别=180-100=80度所以这个平行四边形四个内角分别是80度,100度,80度,100度
已知:四边形ABCD是平行四边形,求证:∠A=∠C,∠B=∠D.证明:连接DB,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠ABD=∠CDB,∠ADB=∠CBD,∴∠A=∠C.
平行四边形的对边(相等)且(平行),对角(相等)
若平行四边形中有一组对角互补,A+C=180°A+B=180°B+C=180°A=B=C=D=90°那么这个平行四边形的四个角分别为90°.
证明:∵四边形ABCD是平行四边形∴AB//CD,AD//BC∴∠AOD=∠ODC,∠BOC=∠OCD∵∠AOD=∠BOC∴∠ODC=∠OCD∴OC=OD又∵AO=BO,∠AOD=∠BOC∴⊿AOD≌
因为平行四边形的内角和是360°且对角相等所以一个内角为(360-116)÷2=122°又因为平行四边形的两个相临的内角和为180°所以另一个内角为180-122=58°所以它相邻的俩个内角分别为58
设BO=a则BO=DO=a,BO=2aAC=3a,A0=BO=1.5a平行四边形ABCD的周长为68cm∴2AB+2AD=68AB+AD=34①AOD的周长与△AOB的周长之和为80cm∴A0+AB+
∵ABCD是平行四边形∴OB=OD=1/2BD=6BC+CD=36÷2=18∵E是CD的中点∴OE是△BCD的中位线∴OE=1/2BC∵DE=1/2CD∴OE+DE=1/2CD+1/2BC=1/2(B
S△AOB=2=1/2*AB*hAB*h=4S平行四边形ABCD=AB*2倍的h=2*4=8