已知实数ab满足a2 b2-2a 4b 5=0,则ab的值分别为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:34:35
a²b+ab²=ab(a+b)=1×2=2答案:2
两个非负数的和为0,那么这两个数的值应分别为0即a-1=0b+2=0∴a=1b=-2∴√(-ab)=√2
c^2=ab-9=(6-b)*b-9>=0b^2-6b+9
Ab^2-4ac-ac>a^2+ab-4ac>4a^2+4abb^2-4ac>4a^2+4ab+b^2=(3a+b)^2所以:b^2-4ac>0A
∵a+b=5,ab=3,∴a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2=ab[(a+b)2-4ab]=3(25-12)=39.故答案为:39.
把上式因式分解(a-2b)(a-b)=0则a=2b或a=ba/b=2或1
由x-y=a2b2+5-2ab+a2+4a=(a2b2-2ab+1)+(a2+4a+4)=(ab-1)2+(a+2)2.∵x>y,∴(ab-1)2+(a+2)2>0.则ab-1≠0或a+2≠0,即ab
1.a²+b²=ab+a+b-12(a²+b²)=2(ab+a+b-1)2(a²+b²)-2(ab+a+b-1)=02a²+2b&
原式=ab(a2+2ab+b2)=ab(a+b)2,当a+b=5,ab=3时,原式=3×52=75.故答案是:75.
a²b+2a²b²+ab²=ab(a+2ab+b)=2/5×(3+2×2/5)=38/25=1又13/25
原式=ab(a2+2ab+b2)=ab(a+b)2,当ab=2,a+b=5时,原式=2×25=50.
解答如下:令a+b=x,ab=y则x+y=17xy=66由第一个方程可得x=66/y,所以66/y+y=17即yˆ2-17y+66=0(y-11)(y-6)=0即y=6或y=11当y=6时,
∵a2+b2+a2b2=4ab-1,∴a2-2ab+b2+a2b2-2ab+1=0,∴(a-b)2+(ab-1)2=0,∴a-b=0,ab-1=0,解得a=1,b=1或a=b=-1,∴a+b=2或-2
根号和平方大于等于0,相加等于0,若有一个大于0,则另一个小于0,不成立所以两个都等于0所以a-1=0,ab-2=0a=1,ab=2,b=2/a=2所以1/ab+1/(a+1)(b+1)+……+1/(
(a²+2b²)/2ab≥2(a·√2b)/2ab=√2.故a=√2b,即a:b=(√2):1时,所求最小值为√2,不存在最大值.
a^2b^2+a^2+6ab+2a+9=0(b^2+1)a^2+(6b+2)a+9=0(看作a为未知数的一元二次方程)要使方程有解,(6b+2)^2-36(b^2+1)>=0解得b>=4/3
(a^2+b^2)^2-2a^b^2+ab=1+ab-2a^2b^2=-2(ab-1/4)^2+7/8a^2+b^2>=2ab2a
解ab0,b0.
∵a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2而a-b=5,ab=3,∴a3b-2a2b2+ab3=3×25=75.
解法一:∵a-b=1且ab=2,∴a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2=2×12=2;解法二:由a-b=1且ab=2解得a=2b=1或a=−1b=−2,当a=2b=