已知实矩阵A=(a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 16:53:50
已知实矩阵A=(a
矩阵A为实矩阵,且(A^T)A=A(A^T).证明:A是对称矩阵.

这个结论貌似是不正确的很容易可以举出反例:A=[0-1;10]A满足(A^T)A=A(A^T)=单位矩阵,然而A不是对称矩阵.这个题应该是少了什么约束条件吧?

已知矩阵A,矩阵B满足AB=BA,求矩阵B

碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor

已知A是3阶实对称矩阵,满足A^4+2A^3+A^2+2A=0,且秩r(A)=2求矩阵A的全部特征值,并求秩r(A+E)

因为A可相似对角化所以A与对角矩阵B相似,且B的主对角线上的元素都是A的特征值而相似矩阵的秩相同所以对角矩阵B的秩也是为2所以A的非零特征值的个数为2故特征值为0,-2,-2总结:可对角化的矩阵的秩等

已知矩阵n*n矩阵B=A*A',A为n*r矩阵,求解A矩阵,matlab如何实现

小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交

已知矩阵A为可逆二阶矩阵,且A^2=A,则A的特征值为?

设λ是A的特征值,则λ^2-λ是A^2-A的特征值而A^2-A=0所以λ^2-λ=0所以λ(λ-1)=0所以λ=1或λ=0因为A可逆,所以A的特征值不等于0故A的特征值为1.

已知A为实对称矩阵,A的平方=0.求证:A=0

反证法:设A为实对称矩阵,并且A不等于零,不妨设A的第i行有一个非零元素,则A的平方的第i行第i列处的元素是A的第i行元素的平方和,由前面的假设,A的平方将不等于零,矛盾.

已知矩阵A=(1 -1)

设a1=xa2+ya3则1=2x+4y-1=x+3y得到x=7/2,y=-3/2所以a1=7/2a2-3/2a3

如何用MATLAB求矩阵:已知矩阵a,和矩阵b,a=b*c,求矩阵c

显然,同时左乘一个b的逆矩阵就行了,所以:c=inv(b)*a

线性代数:已知矩阵A的伴随矩阵A*=diag(1,1,1,8),且ABA(-1)=BA(-1)+3E(意思是矩阵A×矩阵

首先有三个等式(A是可逆的)A^(-1)=A*/|A|AA*=diag(|A|,|A|,|A|,|A|)=|A|E|A||A*|=|A|^n即|A*|=|A|^(n-1)本题n=4由已知ABA^(-1

已知矩阵A求A的逆矩阵A-1,

这个是最简单的逆矩阵了,在右边加上单位矩阵14102701用矩阵的行变化,使左边变为1001这时右边就是A的逆矩阵,结果是-742-1

已知n阶对称矩阵A(未必可逆)满足A^=2A,证明A-I是正交矩阵

A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握

AX=A+2X求矩阵x已知矩阵a

移项,(A-2I)X=A则X=((A-2I)的逆矩阵)左乘A=-386550-8-12-9还可以用伴随矩阵做

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

一道矩阵的题,已知一个25*25的矩阵A,A^4=0(0矩阵),求(I-A)是否存在逆矩阵

当然.法一.因为满足条件的矩阵A特征值只能是0,从而I-A特征值全是1,均非零.故I-A可逆.法二.由已知条件A^4=0,故(I-A)(I+A+A^2+A^3)=I-A^4=I,故I-A可逆,且其逆为

已知A是实反对称矩阵,证明I-A^2为正定矩阵

这用到一个结论:实反对称矩阵的特征值是零或纯虚数所以I-A^2的特征值为1或1-(ki)^2=1+k^2>0所以I-A^2是正定矩阵

已知矩阵A的逆矩阵A

因为A-1A=E,所以A=(A-1)-1.因为|A-1|=-14,所以A=(A-1)-1=2321.  …(5分)于是矩阵A的特征多项式为f(λ)=.λ−2−3−2λ−1.=λ2-

已知矩阵A 求 A^4=?

设b=1-11c=(1,1,-1),则A=bc,A^4=(bc)(bc)(bc)(bc)=b(cb)(cb)(cb)c=b(cb)^3c.而cb=-1,故A^4=b(-1)^3c=-bc=-A=-1-

已知矩阵A,如何求一个矩阵B,使得:A*B=0

如果只是想使A*B=0,取B=0即可.这题问得深入点,可以问,如果A是n*n阵.r(A)可以这么做.因为r(A)

已知伴随矩阵求矩阵A的伴随矩阵等于[2 51 3]求矩阵A

设A的矩阵是[ab][cd],那么按照伴随矩阵的定义可知A的伴随矩阵为[d-b][-ca],由题设A的伴随矩阵等于[25][13],所以有a=3,b=-5,c=-1,d=2.所以矩阵A是[3-5][-