已知实矩阵A=(a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 16:53:50
这个结论貌似是不正确的很容易可以举出反例:A=[0-1;10]A满足(A^T)A=A(A^T)=单位矩阵,然而A不是对称矩阵.这个题应该是少了什么约束条件吧?
碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor
因为A可相似对角化所以A与对角矩阵B相似,且B的主对角线上的元素都是A的特征值而相似矩阵的秩相同所以对角矩阵B的秩也是为2所以A的非零特征值的个数为2故特征值为0,-2,-2总结:可对角化的矩阵的秩等
小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交
设λ是A的特征值,则λ^2-λ是A^2-A的特征值而A^2-A=0所以λ^2-λ=0所以λ(λ-1)=0所以λ=1或λ=0因为A可逆,所以A的特征值不等于0故A的特征值为1.
反证法:设A为实对称矩阵,并且A不等于零,不妨设A的第i行有一个非零元素,则A的平方的第i行第i列处的元素是A的第i行元素的平方和,由前面的假设,A的平方将不等于零,矛盾.
设a1=xa2+ya3则1=2x+4y-1=x+3y得到x=7/2,y=-3/2所以a1=7/2a2-3/2a3
显然,同时左乘一个b的逆矩阵就行了,所以:c=inv(b)*a
首先有三个等式(A是可逆的)A^(-1)=A*/|A|AA*=diag(|A|,|A|,|A|,|A|)=|A|E|A||A*|=|A|^n即|A*|=|A|^(n-1)本题n=4由已知ABA^(-1
这个是最简单的逆矩阵了,在右边加上单位矩阵14102701用矩阵的行变化,使左边变为1001这时右边就是A的逆矩阵,结果是-742-1
A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握
移项,(A-2I)X=A则X=((A-2I)的逆矩阵)左乘A=-386550-8-12-9还可以用伴随矩阵做
因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).
当然.法一.因为满足条件的矩阵A特征值只能是0,从而I-A特征值全是1,均非零.故I-A可逆.法二.由已知条件A^4=0,故(I-A)(I+A+A^2+A^3)=I-A^4=I,故I-A可逆,且其逆为
这用到一个结论:实反对称矩阵的特征值是零或纯虚数所以I-A^2的特征值为1或1-(ki)^2=1+k^2>0所以I-A^2是正定矩阵
因为A-1A=E,所以A=(A-1)-1.因为|A-1|=-14,所以A=(A-1)-1=2321. …(5分)于是矩阵A的特征多项式为f(λ)=.λ−2−3−2λ−1.=λ2-
设b=1-11c=(1,1,-1),则A=bc,A^4=(bc)(bc)(bc)(bc)=b(cb)(cb)(cb)c=b(cb)^3c.而cb=-1,故A^4=b(-1)^3c=-bc=-A=-1-
如果只是想使A*B=0,取B=0即可.这题问得深入点,可以问,如果A是n*n阵.r(A)可以这么做.因为r(A)
设A的矩阵是[ab][cd],那么按照伴随矩阵的定义可知A的伴随矩阵为[d-b][-ca],由题设A的伴随矩阵等于[25][13],所以有a=3,b=-5,c=-1,d=2.所以矩阵A是[3-5][-
|-3A|=(-3)^3|A|=-27*2=-54