已知微分方程xy-yy 1=0,则满足初始条件

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:48:17
已知微分方程xy-yy 1=0,则满足初始条件
求微分方程y^3 dx -(1-2xy^2)dy=0的通解.

y^3dx-(1-2xy^2)dy=0y^3dx+2xy^2dy=dyy^2dx+2xydy=dy/yy^2dx+xdy^2=dy/yd(xy^2)=dlny通解xy^2=lny+C

微分方程xy`-y-(y^2-x^2)^(1/2)=0的通解为

点击放大,如不清楚,点击放大后copy下来看会非常清楚.

求微分方程dy/dx=2xy满足y(0)=1的特解

dy/y=2xdxln|y|=x^2+C0=ln|y(0)|=Cln|y|=x^2|y|=e^(x^2)y(0)=1>0y=e^(x^2)

求微分方程(dy)/(dx)+2xy-xe^(-x^2)=0的通解

y'+2xy=xe^(-x^2)e^(x^2)(y'+2xy)=x(ye^(x^2))'=x两边积分:ye^(x^2)=x^2/2+Cy=x^2e^(-x^2)/2+Ce^(-x^2)

(xy-y^2)dx-(x^2-2xy)dy=0微分方程通解

令u=y/x,怎样推到dy/dx=u+x*du/dx令u=y/x,y=x*u,y'=u+x*u'即dy/dx=u+x*du/dx

微分方程通解 dy/dx=e^(xy)

dy/dx=e^(xy)dy/e^y=e^xdx两边积分得-e^(-y)=e^x+C再问:你这样右边是e^(x+y)啊再答:噢令xy=p两边求导得y+xy'=p'y'=(p'-y)/x=(p'-p/x

求一个微分方程的通解已知y1=xcosx是微分方程x^2y''-2xy'+(x^2+2)y=0的一个解,求其通解----

直接降维呗y2=y1*u=xcosxuy'=(cosx-xsinx)u+xcosxu'y''=(-sinx-sinx-xcosx)u+(cosx-xsinx)u'+(cosx-xsinx)u'+xco

高数微分方程xy'-yln y=0的通解,

dhy2603,这题太容易了,xy'-ylny=0①,两边再对x求一次导得到y'+xy''-y'lny-yy'/y=0,即有xy''-y'lny=0②,联立两式得,ylny*y''/y'-y'lny=

求微分方程xy"+y'=0的通解

∵xy"+y'=0==>xdy'/dx+y'=0==>dy'/y'=-dx/x==>ln│y'│=-ln│x│+ln│C1│(C1是积分常数)==>y'=C1/x∴y=∫C1/xdx=C1ln│x│+

做适当变换,求微分方程xy-y[ln(xy)-1]=0的通解.

这不是微分方程.你漏掉导数符号了或者漏掉微分符号d了.再问:没有,篇子上原题,一模一样。再答:你有没有看清楚,其中是不是有个y有个小小的一撇y'这真的不是微分方程,微分方程要含有导数或者偏导或者等价的

xy'+y-2y^3=0微分方程的解?

伯努利方程xy'+y=2y^3->x/y^3*y'+1/y^2=2令1/y^2=t-x/2*dt/dx+t=2解这个一阶方程得(2x^(-2)+c)*x^2

求微分方程dy/dx+2xy=0的通解

分离变量经济数学团队为你解答,有不清楚请追问.请及时评价.再问:图片看不见啊再答:我再发一次再答:

解微分方程y(x^2-xy+y^2)+x(x^2+xy+y^2)dy/dx=0

做边量替换,u=y/x,即y=uxy’=u+xu'原方程左右同除x^2y变为(1-u+u^2)+(1/u+1+u)(u+xu')=0积分再换回变量就是答案了不知道你会不会积分,再问:还是写下过程吧,没

微分方程 xy-1/x^2y dx - 1/xy^2 dy =0

是xy-[1/(x^2y)]dx-[1/(xy^2)]dy=0还是[(xy-1)/(x^2y)]dx-[1/(xy^2)]dy=0请表达清楚,无歧义!再问:[(xy-1)/(x^2y)]dx-[1/(

求微分方程的通解 y"-xy=0

该微分方程只能用级数解法

紧急!x+y-3^xy=0 求微分方程

答案,X=1Y=0或者X=0Y=1再问:是求微分。不是微分方程。答案是dxdy-3^(xy)•ln3(dx•ydy•x)=0再问:求过程

微分方程xy"-y'=0的通解是?

答:xy''-y'=0(xy''-y')/x²=0(y'/x)'=0y'/x=2Cy'=2Cxy=Cx²+K再问:为什么第二步要除以X的平方呢?第三步又是怎么得出来的?对不起我很笨