已知抛物线cy2 2px,点p(-1,0)是其准线与x轴的交点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 21:33:06
同学这道题是这样做的,你要明白抛物线的定义哦.1,因为y^2=2x,所以焦点为(1/2,0)将x=2带入方程得p点坐标为(2,1).所以p点到焦点的距离为根号(1^2+3/2^2)=根号13/22,由
答:抛物线上的点到焦点的距离等于其到准线的距离,当点P和点Q的所在直线PQ垂直于准线(或者说平行于x轴)时,所求距离之和取得最小值.抛物线y^2=4x的焦点F(1,0),准线方程x=-1所以最小距离为
抛物线为x^2=4y焦点与圆心重合,直线斜率不存在时与抛物线只有一个交点,舍k存在,设直线y-1=kx设A(x1,y1),B(x2,y2)利用抛物线定义,到焦点距离=到准线距离,所以AG=y1+1,圆
(1):→P(1,-2)y`=x/2,设A(m,m²/4),B(n,n²/4)在A点切线斜率k1=m/2在B点切线斜率k2=n/2PA直线斜率:k1=(m²/4+2)/(
点P(6,y)在抛物线y^2=2px(p>0)上,准线为l:x=-p/2,P到焦点的距离等于P到准线的距离∵PF=8∴6-(-p/2)=8∴p=4∴F到准线距离为p=4
把斜率为k的直线方程表示出来,然后联立这个方程和抛物线方程,消去y,获得一个关于x的一元二次方程,这个方程的一个根是1(因为直线与抛物线的一个交点已经是P,方程的一个根就是这个点P的横坐标)由韦达定理
x^2=2*4y,p=4,焦点坐标F(0,2),找出A点关于Y轴的对称点为B(2,4),连结BF,交抛物线于P,取第二象限交点,即为所求,直线BF方程为:(y-2)/(x-0)=(4-2)/(2-0)
这很简单好不好..1)把P、Q两点的坐标带入抛物线的解析式得4+2k+b=-3①1-k+b=0②由②得k=1+b③把③带入①中得4+2*(1+b)+b=-3则b=-3∴k=1+(-3)=-2∴y=x^
由于是抛物线,所以抛物线上一点到焦点的距离等遇到准线的距离|PF|就等于P点到准线的距离,准线x=-1,P点的恒坐标是2,所以|PF|为3再问:准线是怎么计算出来的,谢谢再答:圆锥曲线有第二定义,准线
点P到点A(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|PA|≥|AF|=根号【(12)^2+2^2】=(根号17)/2.故点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为
过M作MN//x轴交准线x=-2于N则:MF=MN所以,MP+MF=MP+MN≥PN所以,P、M、N三点共线时,MP+MF值最小所以,M点纵坐标=P点纵坐标=-1M点横坐标=(-1)^2/8=1/8即
设P(X,Y)则S=(1/8*|Y|)/2=1/4解得:Y=4或-4则X=32所以P(32,-4)或P(32,4)
F(-2,0),AF=4,点A到准线的距离=4所以点A的横坐标为-2,纵坐标为±4O点关于准线的对称点B坐标为(4,0)FO=2,OB=4当A,P,B三点共线时,pa+po的最小值,最小值为ABAB=
以x=-2、y=1代入,得:(-2)²=2pp=2则:抛物线方程是:x²=4y再问:若直线y=kx-1与抛物线C相切,求K的值再答:将y=kx-1代入抛物线x²=4y中,
(3,2根号6)或者(3,-2根号6)
1.焦点F为(0,1),p/2=1,p=2故抛物线方程是x^2=4y2,过P(x1,y1)的切线方程是:x1x=2(y+y1)抛物线的准线方程是y=-1联立得:t=-1,s=2(y1-1)/x1=2(
点P到抛物线焦点距离等于点P到抛物线准线距离,如图PF+PQ=PS+PQ,故最小值在S,P,Q三点共线时取得,此时P,Q的纵坐标都是-1,故选A.