已知抛物线cy2 2px与直线x-√2y 4=0相切
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 21:44:54
y值相等,求出X,直接带入任意一个方程式
第二问:存在.将直线AB向右上方平移到与抛物线相切,切点M与AB的距离最大,此时三角形MAB面积最大.设切线的方程为y=-x+a,由于相切,它和y=-x平方+4组成的方程组只能有一组解,即方程-x+a
y^2=4x得F(1,0),准线是x=-1,即Q(-1,0)设L方程是y=k(x+1),代入得k^2(x^2+2x+1)=4xk^2x^2+(2k^2-4)x+k^2=0判别式=(2k^2-4)^2-
联立两方程,求出的点就是抛物线与直线的交点,没有则说明两线没有交点.
题目有误,请改正.再问:双曲线改为x^2-y^2/3=1再答:(1)F(1,0),抛物线方程是y^2=4x,①(2)把l:y=k(x-2),即x=my+2,②其中m=1/k,代入①,得y^2-4my-
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
设C(x1,y1)D(x2,y2)由题目可知:p=4那么焦点F(2,0)因为直线的倾斜角为45,所以斜率为1所以直线方程为:y=x-2带入抛物线方程中有:(x-2)^2=8x即是:x^2-12x+4=
所谓只有一个交点,就是x²+2x+m-1=x+2m的方程式x只有一个解.x²+2x+m-1=x+2m则(x+1/2)²=m+5/4x+1/2=+/-(m+5/4)的开平方
答:抛物线y=(1/2)x^2+3x-1与直线y=x-k联立得:y=(1/2)x^2+3x-1=x-k(1/2)x^2+2x+k-1=0x^2+4x+2k-2=0x^2+4x+4=6-2k(x+2)^
解(1)分别设OA,OB的斜率为k1,A(x1,y1),B(x2,y2)∴k1=y1/xi,k2=y2/x2解y²=-xy=k(x+1)得k²x+(1+2k²)x+k&s
再问:还有一个问题。。再问:求抛物线y=x+x-k与直线y=-2x+1的另一个交点的坐标再问:再答:再问:再问:十六和十七题
直线y=ax+1恒过定点(0,1)该定点在抛物线内,所以不论a取何值(前提是a存在),都与抛物线有两交点.
把Y=X+2M带进Y=X平方+2X+M-1得X+2M=X平方+2X+M-1,整理得X平方+X-(M+1)=0因为只有一个交点,所以X平方+X-(M+1)=0的△=0即1+4(M+1)=4M+5=0所以
将点A带入抛物线n=2^2=4所以A(2,4)再将A带入直线求出m=y-3x=4-6=-2所以直线y=3x-2联立抛物线和直线x^2=3x-2x^2-3x+2=0x1=1,x2=2所以另外一个交点等横
设抛物线方程为y=a(x-1)^2+cy=-2x+1令x=0得y=1令y=0得x=1/2即抛物线过(0,1)(1/2,0)两点.x=0y=1x=1/2y=0分别代入y=a(x-1)^2+c1=a(0-
设两点存在,分别为A(a2,a),B(b2,b),设AB的斜率为k′,k′=-1k,∴k′=a−ba2−b2=1a+b=-1k,∴a+b=-k,b=-k-a,设M(m,n),则m=a2+b22=(a+
证明:将抛物线和直线的方程联立:y^2=-x①y=k(x+1)②把②式代入①式化简:k^2*x^2+(2*k^2+1)*x+k^2=0根据韦达定理:xA*xB=1,代回抛物线方程yA*yB=-根号(-
(1)由y=2x²,y=4x消y得x=0或x=2故面积s=∫(0--2)4x-2x²dx=2x²-(2/3)x³|(0--2)=8/3(2)设直线方程为y=4x
答:因为:平移后的直线与OB直线即y=x平行所以:设平移后的直线为y=x+b与抛物线y=x²-3x联立得:y=x²-3x=x+bx²-4x-b=0因为:直线与抛物线仅有一
解方程组y²=2pxy=x得y^2=2pyy=0y=p所以交点为(0,0)和(p,p)因为P(2,2)为AB的中点所以(0+p)/2=2p=4