已知抛物线cy^2=4x,过其焦点F作两条相互垂直且不平行与x轴的直线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 21:42:47
已知抛物线cy^2=4x,过其焦点F作两条相互垂直且不平行与x轴的直线
已知抛物线y=a(x+2)的平方+k过点(1,-3),且其顶点的纵坐标为3,求抛物线的解析式,对称轴,顶点坐标

顶点的纵坐标为3所以k=3y=a(x+2)²+3过点(1,-3)a(1+2)²+3=-3a=-2/3y=-2/3(x+2)²+3对称轴x=-2顶点(-2,3)再问:还有一

已知抛物线方程:y=x²-4x+2,求过线外一点p(1,0)与抛物线切线方程.

再问:没看懂再答:答案对不再问:不知道。因为我没看懂,我求方法,最好用导数来做再答:我用了再答:你给个好评吧再答:我告诉你方法再答:这题有点难算再问:告诉我方法,你写的字我没看懂再答:给好评吧再答:我

已知[抛物线y^2=4x.过其焦点作一条斜率等于2的直线交抛物线于A,B两点,求三角形AOB的面积

F(1,0)所以直线是y=2x-22x-y-2=0则O到AB距离=|0-0-2|/√(2²+1²)=2/√5这是高AB是底边y²=(2x-2)²=4xx&sup

已知是抛物线x^2=4y,过其焦点F,且倾斜角为4分之π的直线交抛物线于A,B两点,则线段AB的长为

用解析几何来解决,抛物线x^2=4y,焦点是(0,2),直线y=pi/4*x+2联立两方程求解交点A(x1,y1),B(x2,y2)AB=y1+y2+p根据韦达定理,直接求得y1+y2=4+1/(4*

已知过抛物线y^2=4x的焦点F的直线交抛物线为A、B两点,AF=2,则BF=

F(1,0),准线:x=-1.设A(x1,y1),则AF=x1+1=2,x1=1,∴AF:x=1,∴BF=AF=2.

已知抛物线y^2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为K的直线l与抛物线交于A、B两点,弦AB的.

【参数法】抛物线y²=-4x.焦点F(-1,0).准线x=1,点M(1,0).(一)可设直线L:y=k(x-1).与抛物线方程联立得:k²x²+(4-2k²)x

已知过抛物线y的平方=4x的焦点F的直线交该抛物线于A,B两点,|AF|=2,则|BF|=?

焦点为(1,0)焦距为1所以都为2再问:焦点不是2,0吗?再答:不是,Y的平方=2PX焦点为(p,0)现在2P等于4所以要除4所以为(1,0)所有y的平方=aX焦点都为(a/4,0)再问:为什么都为2

求抛物线的焦点坐标已知抛物线y=x²+2x+3,其焦点坐标是

原式化为(x+1)²+2=y,相当于x²=y的图像向左平移1个单位,又向上平移2个单位,故焦点坐标为(-1,9\4)

已知抛物线y=ax^2+bx+c(a>0)过(0,4)(2,2)两点,若抛物线在x轴上截得的线段最短时,

c=44a+2b+c=2所以b=-2a-1截得线段最短,意味着与x轴只有一个交点△=b^2-4ac=4a^2-12a+1=0解得:a=3/2±根号2,

已知椭圆的中心在原点,其左焦点F1与抛物线y的平方=-4x的焦点重合,过F1的直线L与椭圆交于A,B两点,与抛物线交于C

1、由于抛物线y^2=-4x的焦点坐标为(-1,0),故c=1(对于椭圆而言)当直线L与x轴垂直时,|CD|:|AB|=2√2此时|CD|=4,故|AB|=√2又|AB|=2b^2/a=√2a^2-b

已知抛物线的顶点在原点,焦点在x轴上,其准线过双曲线x

由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p=2c.设抛物线方程为y2=4c•x,∵抛物线过点(32,-6),∴6=4c•32.∴c=1,故抛物线方程为y2=4x.又双曲线x2a

已知圆C:x^2+y^2-4x=a,抛物线y^2=4x,过抛物线焦点F的直线L与圆交于M,N,与抛物线相交于A,B

假设存在这样的直线,则FA·FB=MN^2如果斜率不存在,检验一下是否可以,以下讨论斜率存在的情况:注意运用抛物线上一点的性质:设A、B的横坐标分别是x1,x2,则联立直线方程与抛物线方程消元后,可以

已知抛物线C:y2=2px,点P(-1,0)是其准线与x轴的交点,过P的直线l与抛物线C交于A,B

(1)抛物线准线是x=-p/2  所以p=2y²=4x设A(x1,y1)  B(x2,y2)  中点为(x,y)那么y1+y2=2

已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=______.

由抛物线的定义.抛物线上任一点到焦点的距离与到准线的距离是相等的.已知|AF|=2,则到准线的距离也为2.根据图形AFKA1,是正方形.可知|AF|=|AA1|=|KF|=2∴AB⊥x轴故|AF|=|

已知抛物线当x=2时有最小值-4,且抛物线过点A(3,0),则求该抛物线的解析式?

由题意:抛物线的顶点为(2,-4),设抛物线解析式为y=a(x-2)2-4把A(3,0)代入,得a-4=0,解得a=4,∴抛物线解析式为y=4(x-2)2-4.

已知(ax^2-2xy+y^2)-[-ax^2+bxy-(1/2)cy^2]=6x^2-5xy+cy^2恒成立,求a+b

(ax^2-2xy+y^2)-[-ax^2+bxy-(1/2)cy^2]=6x^2-5xy+cy^2ax²-2xy+y²+ax²-bxy+(1/2)cy²=6x

已知抛物线y=x^2-2x-8,将这条抛物线沿x轴平移使其通过原点?

令抛物线y=x^2-2x-8=0,得x=4或x=-2(即求抛物线y=x^2-2x-8与x轴的交点的横坐标.)所以把抛物线y=x^2-2x-8沿x轴向左平移4个单位或向右左平移2个单位,使抛物线y=x^

已知抛物线y=-x^2+2,过其上一点P引抛物线的切线L使L与两坐标在第一向限围成的三角形面积最小求切线L的切线

设切点P为(a,-a^2+2),将这个y=-x^2+2求导有y的导数=-2x,所以切线的斜率为k=-2a,故设切线为y=-2ax+2+a^2,由于所围成的三角形在第一象限,所以a>0,x轴,y轴的截距