已知抛物线py=ax² bx c的顶点为C梦之星

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:14:29
已知抛物线py=ax² bx c的顶点为C梦之星
已知抛物线L的方程为x^2=2py,(p>0),o为坐标原点,F为抛物线的焦点,直线y=x截抛物线L所得弦|OB|=4根

答:(1)把y=x代入抛物线x^2=2py,解得:x1=0,x2=2p所以B点坐标为(2p,2p)|OB|=√[(2p-0)^2+(2p-0)^2]=2√2p=4√2所以p=2抛物线方程为:x^2=4

高中圆锥曲线题,已知P为抛物线x方=2py(p

首先有F(0,p/2),dy/dx=x/p则有设抛物线上有点(x0,y0)则过该点切线方程有y=x0/px-x0^2/2p过F的垂线有y=-p/x0x+p/2则解得x=x0/2,y=0那么得出结论,改

已知抛物线C:x^2=2py(p>0)上一点(m,1)到焦点的距离为5/4.(1)求p和m的值

x^2=2py,焦点坐标是(0,p/2),准线方程是y=-p/2根据定义得,y1+p/2=5/4,即1+p/2=5/4得到p=1/2.x^2=2py=ym^2=1m=(+/-)1

已知抛物线C:x2=2py(p>0)上一点M(m.4)到其焦点的距离为5求抛物线C的方程?

到焦点距离=到准线距离所以到准线距离也是5准线为y=-p/2(p>0)M(m,4)到y=-p/2的距离d=4-(-p/2)=4+p/2=5,可解得p=2所以,抛物线方程为:x²=4y祝你开心

已知抛物线C:x2=2py(p>0)上一点M(x,2)到其焦点F的距离为3 (1)求抛物线C的方程?

M(x,2)到其焦点F的距离为3,则到准线的距离也是3x2=2py的准线是y=-p/2,2-(-p/2)=3,p=4抛物线方程为x2=8y

12 已知抛物线y²=2py(p>0)的焦点F恰好是双曲线

设:两曲线交点是A、B,则:对抛物线来说,|AB|=2p对双曲线来说,|AB|=(2b²)/a则:p=b²/a另外,p/2=c,即:p=2cb²/a=2cb²=

已知抛物线x^2=2py上的一点A(m,4)到其焦点的距离为17/4

1.由yA+p/2=17/4得p=1/2.所以抛物线方程为x2=y.代入得m=2或-2.2.因为B(-1.1)在抛物线上,所以B1.B2均为B点本身.故易知P.Q均位于B在抛物线的切线上,求得切线方程

(2013•闸北区三模)已知抛物线C:x2=2py(p>0)的焦点为F,点A(a,4)为抛物线C上的定点,点P为抛物线C

(1)△FOA的外接圆的圆心在线段OF的中垂线y=p4上,则圆心的纵坐标为p4故到准线的距离为p2+p4=32从而p=2…(2分)即抛物线C的方程为:x2=4y.…(4分)(2)设P(x0,y0),则

已知抛物线x^2=2py,在点(1,1/2p)和(-1,1/2p)处的两条切线互相垂直,求抛物线方程.

对抛物线方程求导得:2x=2py'=>y'=x/p所以点(1,1/2p)处的切线斜率为1/p,在(-1,1/2p)处的切线斜率为-1/p两条切线互相垂直,所以(1/p)(-1/p)=-1,解得p=±1

如图 已知抛物线的方程为x^2=2py 过点a(0,1)的直线

这种题目高考不会出,奥林匹克也不会考,国家级或者国际级可能会考,不必钻这种题目哦.以下是奥林匹克高手的解法,方法正确,请检验计算结果.PQ:y=kx-1x^2=2py=2p*(kx-1)x^2-2pk

已知椭圆k1:x2/a2+y2/b2=1((a>b>0)的右焦点F(c,0),抛物线K2:X2=2 py(P>0)的焦点

首先M点在抛物线上.代入可求出抛物线的方程y=x^2/4求导在M点切线斜率为k=1所以直线方程为y=x-1与X轴交点为(1,0)所以C=12.这个化简有点麻烦.设M(x1,y1)可以得到p的表达式.求

已知抛物线x^2=-2py上一点M(m,-3)到焦点F的距离为5,求抛物线的方程及m的值

M(m,-3)到焦点F的距离为5,即准线到x轴距离为2,由准线方程y=p/2,可得p=4,所以抛物线x²=-8y,代入M(m,-3),可得m=±2√6.

已知抛物线x²=2py(p>0)上的点到直线lx-y-2的距离√2/2,求抛物线标准方程

令抛物线上距离直线L最近的点为Q(x0,y0),则过Q点的切线平行于直线L令过Q点的切线为x0x=p(y+y0),即x0x-py-py0=0则x0=p(I)而Q到直线L的距离为|x0-y0-2|/√2

已知抛物线x^2=2py(p>0)的准线与圆x^2+y^2-4y-5=0相切,则抛物线的方程为

已知抛物线x^2=2py(p>0)的准线y=-p/2圆x^2+y^2-4y-5=0x^2+(y-2)^2=9抛物线x^2=2py(p>0)的准线与圆x^2+y^2-4y-5=0相切,-p/2=-3p=

已知抛物线C:X =2py(p>0)过点A(-2,1),求抛物线C的方程

以x=-2、y=1代入,得:(-2)²=2pp=2则:抛物线方程是:x²=4y再问:若直线y=kx-1与抛物线C相切,求K的值再答:将y=kx-1代入抛物线x²=4y中,

a+b=b+a a+b+c=a+(bxc) axbxc=ax(bxc) (a+b)xc=axc+bxc 运用了什么运算律

运用了加法交换定律乘法交换律乘法分配律

已知抛物线x2=2py(p>0)的准线与圆x^2+(y-3)^2=16相切

(1)抛物线x^2=2py(p>0)的准线:y=-p/2与圆x^2+(y-3)^2=16相切,所以p/2+3=4,p=2,所以抛物线的方程是x^2=4y.①(2)F(0,1),设l:y=kx+1,②代