已知抛物线y1=ax² 4ax 3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:39:07
已知抛物线y1=ax² 4ax 3
已知直线y1=mx+n与抛物线y2=ax²+bx+c交于A(1,4),B(-2,-2),且抛物线与Y轴交与C(

(1)y1=2x+2,y2=-1/2x²+3/2x+3第(2)问是求共同的增区间么那应该是x≤3/2再问:要过程的再答:第一题就是带入数据解方程第二题,y1的增区间是R,y2的增区间是x≤3

已知抛物线y1=ax的平方+c与x轴交于点A,B,与y轴交于点C.抛物线y2与抛物线y1关于x轴对称,与y轴交于点D,若

选D若四边形ACBD是正方形那么就有CD=ABCO=AO=c即可以得到抛物线与x轴的交点为(c,0),(-c,0)将点代入y1=ax的平方+c可得到ac²﹢c=0ac﹙c﹢1﹚=0ac≠0∴

已知抛物线y1=aX平方+bx+c(a不等于0,a不等于c)过点A(1,0),顶点为B,且抛物线不经过第三象限.

因为y1不过第三像限,则抛物线开口向上,所以a>0将点A代入y1中可得a+b+c=0.(1)将点C代入y1中可得a(c/a)²+b(c/a)+c=b-8整理可得c(a+b+c)=a(b+8)

已知抛物线y1=ax的平方+bx的对称轴为直线x=3,最高点在直线y2=2x+3上,求抛物线的解析式?

1、顶点在直线y2=2x+3上,把x=3代入得抛物线经过为(3,9)y=a(x-3)^2+9即y=ax^2-6ax+9a+9所以9a+9=0a=-1解析式为y=-x^2+6x2、略3、解不等式-x^2

已知抛物线Y^2=AX的焦点为F(1,0),A(x1,y1),B(1,y2),C(x3,y3),(0小于等于y1小于Y2

题目不清楚怎么写再问:已知抛物线Y^2=AX的焦点为F(1,0),A(x1,y1),B(1,y2),C(x3,y3),(0小于等于y1小于Y2小于Y3)为抛物线上的三个点,且AF的绝对值+CF的绝对值

一道二次函数题已知抛物线y1=ax^2+bx+c(a不等于0,c不等于0)过点A(1,0),顶点为B,且抛物线不经过第三

⑶依已知条件得a+b+c=0,a(c/a)²+b(c/a)+c=b+8,解得b=﹣8,c=8-a;设抛物线顶点B(x1,y1),则x1=-b/2a=4/a,y1=a(x1)²+b(

二次函数) 已知抛物线y1=ax^2+bx+c(a≠0,a≠c)过点A(1,0)顶点为B,且抛物线不经过第三象

再问:为什么“当x≥1时,当且仅当x=2时有最小值ymin=-2所以当x≥1,y1≥-2”再答:因为该函数表达式为y1=2(x-2)^2-2为开口朝上的抛物线,对称轴x=2处得最小值

已知抛物线y=ax²+bx+c(a>0)的对称轴为直线x=1,且经过点(-1,y1),(2,y2),试比较y1

关于x=1对称,离1越远.y越大再问:请比较y1与y2的大小关系再答:y1>y2再答:

..抛物线Y=x平方加X+B平方,已知(a,负4分之1)(a,Y1)在这个抛物线上.求Y1的值?

把两点坐标代入y=x^2+x+b^2,得方程组a^2+a+b^2=-1/4a^2-a+b^2=m(a+1/2)^2=-b^2=>b=0,a=-1/2m=a^2-a+b^2=1/4+1/2+0=3/4m

已知抛物线y1=ax∧2-2x+c经过(0,-1)反比例函数y2=k/x经过(1,a)比较y1与y2的大小

把点代入函数可得y1=ax∧2-2x-1,y2=a/xa不知道是正数还是负数,要分情况讨论哦再问:谢谢啦不过我已经会做了

已知抛物线y=ax的平方+bx+c(a大于0)的对称轴为直线X=1,且经过点(-1,y1,(2,y2),

已知:a>0所以,抛物线开口朝上,离对称轴越远y值越大已知:对称轴为直线X=1,(-1,y1)与对称轴的距离为2,(2,y2)与对称轴的距离为1所以:y1>y2

已知点A(-3,y1)、B(5,y2)均在抛物线y=ax+ bx+ c(a≠0)上,点C(x0,y0)是该抛物线项点,若

点A(-3,y1)、B(5,y2)均在抛物线y=ax^2+bx+c(a≠0)上,∴y1=9a-3b+c,y2=25a+5b+c,点C(x0,y0)是该抛物线项点,若y0大于等于y1大于y2,则x0=-

已知抛物线y=ax²-4ax+4a-2 其中a是常数 1求抛物线顶点坐标

y=ax²-4ax+4a-2=a(x²-4x+4)-2=a(x-2)²-2所以顶点坐标为(2,-2)

如图,抛物线y1=-ax²-ax=1经过点P(-1/2,9/8),且与抛物线y2=ax²-ax-1相

如图,抛物线y1=-ax2-ax+1经过点P(-1/2,9/8),且与抛物线y2=ax2-ax-1相交于A,B两点.(1)求a的值解析:∵抛物线y1=-ax2-ax+1经过点P(-1/2,9/8)∴9

已知点A(X1,Y1)、B(X2,Y2)均在抛物线Y=ax^2+2ax+4(0

将X1代入抛物线,得Y1=aX1²+2aX1+4将X2代入抛物线,得Y2=aX2²+2aX2+4Y1-Y2=a(X1²-X2²)+2a(X1-X2)=a(X1-

已知两点A(-5,y1),B(3,y2)均在抛物线y=ax平方+bx+c上,点C(x0,y0)是该抛物线的顶点,若y1>

∵点C(x0,y0)是抛物线的顶点,——如果开口向上,则y0最小,如果开口向下,则y0最大y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,——应该是函数有最小值,等于y0①点A、B在对称轴的同一

已知两点A(-5,y1),B(3,y2)均在抛物线y=ax平方+x+c上,点C(x0,y0)是该抛物线的顶点

(路过.)∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,①点A、B在对称轴的同一侧,∵y1>y2≥y0,∴x0≥3,②点A、B在对称轴异侧,∵y1>y2≥y

已知两点A(-5,y1),B(3,y2)均在抛物线y=ax平方+x+c上,点C(x0,y0)是该抛

∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,①点A、B在对称轴的同一侧,∵y1>y2≥y0,∴x0≥3,②点A、B在对称轴异侧,∵y1>y2≥y0,∴x0

已知抛物线y=ax2-3ax+4,

(1)抛物线的对称轴为x=-−3a2a=32;(2)将A(-1,0)代入y=ax2-3ax+4得,a+3a+4=0,解得a=-1,解析式为y=-x2+3x+4.当y=0时,原式可化为x2-3x-4=0

已知抛物线Y=aX^2(a

y=ax^2,x^2=2*(1/2a)*y,即p=1/2a所以F(0,p/2)即F(0,1/4a),准线l:y=-p/2即y=-1/4a(1)直线L斜率不存在.易得只有一交点,不合题意(2)设直线L: